• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
YANG Tong-shuai, YE Guan-lin, GU Lin-lin. Small-strain triaxial tests and constitutive modeling of Shanghai soft clays[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(10): 1930-1935. DOI: 10.11779/CJGE201810021
Citation: YANG Tong-shuai, YE Guan-lin, GU Lin-lin. Small-strain triaxial tests and constitutive modeling of Shanghai soft clays[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(10): 1930-1935. DOI: 10.11779/CJGE201810021

Small-strain triaxial tests and constitutive modeling of Shanghai soft clays

More Information
  • Received Date: September 07, 2017
  • Published Date: October 24, 2018
  • In order to reduces the influence of the existing buildings in the surrounding area, the surrounding soil of the new project usually requires the control of the small strain state (0.001%~0.1%). In recent years, the construction scale of underground projects has been continuously expanded, and the mechanical properties of soft clay in the small strain range have received increasing attention. At present, the study on the small-strain mechanical properties of soft soils in triaxial tests is relatively few and lack of the relevant test data. A small strain is developed based on an the LVDT sensors with high-accuracy triaxial apparatus, and K0 consolidation undrained shear tests on layer ②~⑥ soils are performed of Shanghai soft using the triaxial apparatus. The change of modulus of Shanghai soft soils in the small strain range of 0.001%~20% is obtaived. The shear modulus is normalized by using the initial shear modulus and effective average principal stress, so as to reveal the nonlinear characteristics of Shanghai soft soils as well as the shear stiffness attenuation characteristics with strain, etc. The empirical formula considering stress state, pore ratio and overconsolidation ratio of soils can reasonably describe the initial shear modulus of Shanghai soft soils. The classical model for backbone curve can better fit the attenuation rules of shear modulus of each soil layer.
  • [1]
    ATKINSON J H, SALLFORS G.Experimental determination of stress-strain-time characteristics in laboratory and in situ tests[C]// Proceedings of the International Conference on Soil Mechanics and Foundation Engineering. Brasilia, 1991: 915-956.
    [2]
    CLAYTON C R I, HEYMANN G. Stiffness of geomaterials at very small strains[J]. Géotechnique, 2001, 51(3): 245-255.
    [3]
    VIGGIANI G, ATKINSON J H.Stiffness of fine-grained soil at very small strains[J]. Géotechnique, 1995, 45(2): 249-265.
    [4]
    CLAYTON C R I, HIGHT D W, HOPPER R J. Progressive destructuring of Bothkennar clay: implications for sampling and reconsolidation procedures[J]. Géotechnique, 1992, 42(2): 219-239.
    [5]
    NG C W W, PUN W K, PANG R P L. Small strain stiffness of natural granitic saprolite in Hong Kong[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126(9): 819-833.
    [6]
    WANG Y, NG C W W. Effects of stress paths on the small-strain stiffness of completely decomposed granite[J]. Canadian Geotechnical Journal, 2005, 42(4): 1200-1211.
    [7]
    江娟. 上海软土小应变特性与长期变形规律试验研究[D]. 上海: 同济大学, 2009.
    (JIANG Juan.Test study on the small strain characteristics and long-tern deformation of shanghai soft soil[D]. Shanghai: Tongji University, 2009. (in Chinese))
    [8]
    汪中卫. 上海软土小应变刚度的高精度试验研究[J]. 城市道桥与防洪, 2012, 29(3): 160-162.
    (WANG Zhong-wei.Study on high-precion experiment os small strain rigidity of soft soil in Shanghai[J]. Urban Roads Bridges&Flood Control, 2012, 29(3): 160-162. (in Chinese))
    [9]
    梁发云, 贾亚杰, 丁钰津, 等. 上海地区软土HSS模型参数的试验研究[J]. 岩土工程学报, 2017(2): 269-278.
    (LIANG Fa-yun, JIA Ya-jie, DING Yu-jin, et al.Experimental study on the parameters of HSS model of Shanghai soft soil[J]. Chinese Journal of Geotechnical Engineering, 2017(2): 269-278. (in Chinese))
    [10]
    李青, 徐中华, 王卫东, 等. 上海典型黏土小应变剪切模量现场和室内试验研究[J]. 岩土力学, 2016(11): 3263-3269.
    (LI Qing, XU Zhong-hua, WANG Wei-dong, et al.Experimental study on the small strain shear modulus of typical clay in Shanghai[J]. Rock and Soil Mechanics, 2016(11): 3263-3269. (in Chinese))
    [11]
    陈超斌, 武朝军, 叶冠林, 等. 小应变三轴试验方法及其在上海软土的初步应用[J]. 岩土工程学报, 2015(增刊2): 37-40.
    (CHEN Chao-bin, WU Chao-jun, YE Guan-lin, et al.Small-strain riaxial test method and its preliminary application in Shanghai soft clay[J]. Chinese Journal of Geotechnical Engineering, 2015(S2): 37-40. (in Chinese))
    [12]
    WU Chao-jun, YE Guan-lin, ZHANG Lu-lu, et al.Depositional environment and geotechnical properties of Shanghai clay: a comparison with ariake and bangkok clays[J]. Bulletin of Engineering Geology and the Environment, 2015, 74(3): 717-732.
    [13]
    YE Guan-lin, WU Chao-jun, WANG Jian-feng, et al.Influence and countermeasure of specimen misalignment to small strain behaviour of soft marine clay[J]. Marine Georesources & Geotechnology, 2015, 35(2): 170-175.
    [14]
    BALDI G, HIGHT D W, THOMAS G E.A reevaluation of conventional triaxial test methods[C]// Advanced Triaxial Testing of Soil and Rock, ASTM STP 977. Philadelphia: American Society for Testing and Materials, 1988: 219-263.
    [15]
    CLAYTON C R I, KHATRUSH S A. A new device for measuring local axial strains on triaxial specimens[J]. Géotechnique, 1986, 36(4): 593-597.
    [16]
    KIM T C, NOVAK M.Dynamic properties of some cohesive soils of Ontario. Canadian Geotech. Journal, 1981, 18(3): 371-389.
    [17]
    HARDIN B O, DRNEVICH V P.Shear modulus and damping in soils: Measurement and parameter effects[J]. Journal of the Soil Mechanics and Foundations Division, 1972, 98(SM60): 603-624.
    [18]
    RAMBERG W, OSGOOD W R.Description of stress-strain curve by three parameters[C]// Technical Note 902, National Advisory Committee for Aeronautics, Washington D C, 1943.
  • Related Articles

    [1]CUI Hao, XIAO Yang, SUN Zeng-chun, WANG Cheng-gui, LIANG Fang, LIU Han-long. Elastoplastic constitutive model for biocemented sands[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(3): 474-482. DOI: 10.11779/CJGE202203009
    [2]ZHANG Yong, RAO Chun-chun, DONG Huang-shuai, HU Min-yun. Consolidated drained triaxial tests and constitutive model for reconstituted soft clay[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 101-104. DOI: 10.11779/CJGE2019S2026
    [3]YAO Yang-ping, FANG Yu-fei. Properties of negative creep and its constitutive model for soils[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(10): 1759-1765. DOI: 10.11779/CJGE201810001
    [4]CAI Cong, MA Wei, ZHAO Shu-ping, ZHOU Zhi-wei, MU Yan-hu. Uniaxial tests on frozen loess and its constitutive model[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(5): 879-887. DOI: 10.11779/CJGE201705012
    [5]ZHOU En-quan, WANG Zhi-hua, CHEN Guo-xing, LÜ Cong. Constitutive model for fluid of post-liquefied sand[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(1): 112-118. DOI: 10.11779/CJGE201501013
    [6]WANG Lei, ZHU Bin, LI Jun-chao, CHEN Yun-min. Two-phase constitutive model for fiber-reinforced soil[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(7): 1326-1333. DOI: 10.11779/CJGE201407017
    [7]MI Zhan-kuan, LI Guo-ying, CHEN Sheng-shui. Constitutive model for coarse granular materials based on breakage energy[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1801-1811.
    [8]Degrading deformation of rockfill materials and its constitutive model[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(1).
    [9]SONG Li, LIAO Hongjian, HAN Jian. Three-dimensional nonlinear elastic viscoplastic constitutive model of soft rock[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(1): 83-88.
    [10]YANG Songlin, ZHU Huanchun, LIU Zude. A new constitutive model of the layered rock mass reinforced with bolts[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(4): 427-430.
  • Cited by

    Periodical cited type(17)

    1. 徐敏,刘正明,罗元喜,许宝田,刘开斌. 基于旁压试验的常州地区典型砂土变形特性研究. 工程勘察. 2024(07): 15-21 .
    2. 石玉琪,乐治济. 海上风电钢管复合嵌岩桩设计要素研究. 水电与新能源. 2023(01): 30-35 .
    3. 张振,张永刚,叶观宝,刘洪伟. 气泡轻质土空气耦合冲击回波响应特性研究. 施工技术(中英文). 2023(08): 141-145 .
    4. 高彦斌,罗文康,李泳键. 两种固结方式下软黏土三轴不排水剪切的模量. 同济大学学报(自然科学版). 2023(09): 1416-1423 .
    5. 张晗,杨石飞,王琳,林天翔. 上海地区软土旁压加卸载变形特性试验研究. 岩土工程学报. 2022(04): 769-777 . 本站查看
    6. 居尚威,李雄威. 地铁深基坑施工扰动下邻近管线影响区域划分及迁改保护措施. 常州工学院学报. 2022(02): 7-14 .
    7. 刘谨豪,严远忠,张琪,卞荣,贺雷,叶冠林. 地面堆载对既有隧道影响离心试验和数值分析. 上海交通大学学报. 2022(07): 886-896 .
    8. 刘锦军,吴怿华,徐俊,蒋明杰,孙诚涛,李平. 深基坑微扰动成桩及紧邻高铁站房变形特性研究. 广西大学学报(自然科学版). 2022(04): 882-892 .
    9. 潘上,刘谨豪,张琪,叶冠林. 三轴仪K_0系数测量与应力路径试验功能的研发. 上海交通大学学报. 2021(04): 372-379 .
    10. 时振昊,黄茂松,倪雨萍. 基于颗粒间应变的饱和黏土小应变各向异性非线性本构模型. 岩土力学. 2021(04): 1036-1044 .
    11. 卞荣,龙月,贺雷,闫斌,张琪. 桩基施工对邻近顶管隧道的扰动影响. 科学技术与工程. 2021(18): 7551-7557 .
    12. 陈赟,罗敏敏,夏能武,何鹏. 软土HSS模型参数现有试验成果统计分析. 岩土工程学报. 2021(S2): 197-201 . 本站查看
    13. 张帅,程晓辉,王天麟. 非等向固结砂土极小应变刚度的超弹性模型. 工程力学. 2020(01): 145-151 .
    14. 石玉琪. 小应变模型与p-y曲线法在海上风电大直径单桩基础上的运用比较. 中国水运(下半月). 2020(12): 149-150+152 .
    15. 石玉琪. 小应变模型与p-y曲线法在海上风电大直径单桩基础上的运用比较. 中国水运(下半月). 2020(24): 149-150+152 .
    16. 冯雪威. K_0应力路径试验在上海地区工程勘察中的应用. 探矿工程(岩土钻掘工程). 2019(04): 70-74+79 .
    17. 周羽哲,诸洲. 上海软土地区基坑开挖对既有铁路的影响. 四川建筑. 2019(06): 100-101 .

    Other cited types(7)

Catalog

    Article views (439) PDF downloads (299) Cited by(24)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return