• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

土的现代本构理论的发展回顾与展望

杨光华

杨光华. 土的现代本构理论的发展回顾与展望[J]. 岩土工程学报, 2018, 40(8): 1363-1372. DOI: 10.11779/CJGE201808001
引用本文: 杨光华. 土的现代本构理论的发展回顾与展望[J]. 岩土工程学报, 2018, 40(8): 1363-1372. DOI: 10.11779/CJGE201808001
YANG Guang-hua. Review of progress and prospect of modern constitutive theories for soils[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1363-1372. DOI: 10.11779/CJGE201808001
Citation: YANG Guang-hua. Review of progress and prospect of modern constitutive theories for soils[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1363-1372. DOI: 10.11779/CJGE201808001

土的现代本构理论的发展回顾与展望  English Version

基金项目: 国家自然科学基金项目(51778152,51378131); 广东省省级科技计划项目(2014B070706008)
详细信息
    作者简介:

    杨光华(1962- ),男,广东罗定人,博士,教授级高级工程师,博士生导师,主要从事本构理论、基础工程、软土工程及基坑工程等方面的研究、设计及咨询工作。E-mail: 1084242143@qq.com。

Review of progress and prospect of modern constitutive theories for soils

  • 摘要: 土的本构模型是现代土力学的核心和关键。自从剑桥弹塑性模型创立以来,土的本构模型历经了50多年的研究,建立的模型数以百计,但真正能为工程所应用的则很少,如何更好地发展岩土本构模型?为此,回顾和分析了各种建立岩土本构模型的理论,认为要较好解决岩土本构模型的问题,首先要有适合岩土材料的本构理论,传统应用的一些理论用于岩土材料是有其局限性的。广义位势理论是一种普遍和方便的建模理论。本构模型的验证除在主空间上进行试验验证外,更合理的应该是进行边值问题的验证。同时,要使模型能用于工程设计,则应发展参数易于确定的模型,还需要解决模型参数的合理确定问题,对于天然岩土材料,由于取样扰动等的影响,室内参数与原位土差异较大,发展基于原位试验的模型参数确定方法,可能是解决的途径。
    Abstract: The constitutive model for soils is the core and key of modern soil mechanics. Since the creation of Cambridge elasto-plastic model, the constitutive model for soils has been studied for more than 50 years, and hundreds of models have been established, but few of them can be used for engineering. How to develop the constitutive model for rocks and soils better? In this paper, the theories of various constitutive models are reviewed and analyzed. In order to solve the problem, Firstly, there must be some theories of constitutive model suitable for geotechnical materials, in which the traditional theories have their limitations. The generalized potential theory is a modeling theory which is general and convenient. For the verification of the constitutive model, it is more reasonable to verify the problem of boundary values in addition to the experimental verification in the main space. At the same time, a model easy to determine the parameters should be developed to be used in engineering design. In addition, the problem of reasonable determination of model parameters also needs to be solved. For natural geotechnical materials, due to the impact of sampling disturbances, the difference is large, and the method for determining the model parameters based on the in-situ tests should be developed, which may be the solution.
  • [1] ROSCOE K H, SCHOFIELD A, THURAIRAJAH A.Yielding of clays in states wetter than critical[J]. Géotechnique, 1963, 13(3): 211-240.
    [2] DUNCAN J M, CHANG C Y.Nonlinear analysis of stress and strain in soils[J]. J Geotech Eng ASCE, 1970, 96: 1629-1653.
    [3] 高莲士, 汪召华, 宋文晶. 非线性解耦K-G模型在高面板堆石坝应力变形分析中的应用[J]. 水利学报, 2001(10): 1-7.
    (GAO Lian-shi, WANG Zhao-hua, SONG Wen-jin.Application of nonlinear decoupling K-G model in stress and deformation analysis of high concrete face rock fill dam[J]. Journal of Hydraulic Engineering, 2001(10): 1-7. (in Chinese))
    [4] 程展林, 丁红顺, 吴良平. 粗粒土试验研究[J]. 岩土工程学报, 2007, 29(8): 1151-1158.
    (CHENG Zhan-lin, DING Hong-shun, WU Liang-ping.Study on coarse grain experiment[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(8): 1151-1158. (in Chinese))
    [5] 潘家军, 程展林, 饶锡保, 等. 一种粗粒土非线性剪胀模型的扩展及其验证[J]. 岩石力学与工程学报, 2014(S2): 4321-4325.
    (PAN Jia-jun, CHENG Zhan-lin, RAO Xi-bao, et al.An extension and verification of a nonlinear expansive model of coarse grain[J]. Chinese Journal of Rock Mechanics and Engineering, 2014(S2): 4321-4325. (in Chinese)))
    [6] 沈珠江. 理论土力学[M]. 北京: 中国水利水电出版社, 2000.
    (SHEN Zhu-jiang.Theoretical soil mechanics[M]. Beijing: China Water Power Press, 2000. (in Chinese))
    [7] 沈珠江. 考虑剪胀性的土和石料的非线性应力应变模式[J]. 水利水运科学研究, 1986(4): 1-14.
    (SHEN Zhu-jiang.Nonlinear stress-strain model of soil and stone considering dilatancy[J]. Science Research of Water Resources and Transport, 1986(4): 1-14. (in Chinese))
    [8] 郑颖人. 岩土的多重屈服面理论与应变空间理论[C]// 岩石力学新进展. 1989: 14.
    (ZHENG Ying-ren.Multi-yield surface theory and strain space theory of rock and soil[C]// New Advances in Rock Mechanics. 1989: 14. (in Chinese))
    [9] 沈珠江. 土的三重屈服面应力应变模式[J]. 固体力学学报, 1984(2): 163-174.
    (SHEN Zhu-jiang.Stress-strain model of soil with triple yield surface[J]. Journal of Solid Mechanics, 1984(2): 163-174. (in Chinese))
    [10] 沈珠江. 土体应力应变分析中的一种新模型[C]//第五届土力学及基础工程学术会议论文选集. 厦门, 1990: 101-105.
    (SHEN Zhu-jiang.A new model for stress and strain analysis of soil[J]. Selected Articles of the Fifth Conference on Soil Mechanics and Basic Engineering. Xiamen, 1990: 101-105. (in Chinese))
    [11] VERMEER P A.A double hardening model for sand[J]. Géotechnique, 2015, 28(4): 413-433.
    [12] 殷宗泽. 一个土体的双屈服面应力-应变模型[J]. 岩土工程学报, 1988(4): 64-71.
    (YIN Zong-ze.Stress-strain model of double yield surface of soil[J]. Chinese Journal of Geotechnical Engineering, 1988(4): 64-71. (in Chinese))
    [13] 向大润. 土体弹塑性理论加载准则和计算模型探讨[J]. 岩土工程学报,1983, 5(4): 78-91.
    (XIANG Da-run.Discussion on loading criterion and calculation model of elastic-plastic theory of soil[J]. Chinese Journal of Geotechnical Engineering, 1983, 5(4): 78-91. (in Chinese))
    [14] 黄文熙. 土的弹塑性应力-应变模型理论[J]. 清华大学学报(自然科学版), 1979(1): 1-26.
    (HUANG Wen-xi.Elastic-plastic stress-strain model theory of soil[J]. Journal of Tsinghua University (Science and Technology), 1979(1): 1-26. (in Chinese))
    [15] 黄文熙, 濮家骝, 陈愈炯. 土的硬化规律和屈服函数[J]. 岩土工程学报, 1981, 3(3): 19-26.
    (HUANG Wen-xi, PU Jia-liu, CHEN Yu-jiong.Hardening rule and yield function of soil[J]. Chinese Journal of Geotechnical Engineering, 1981, 3(3): 19-26. (in Chinese))
    [16] 李广信. 土的清华弹塑性模型及其发展[J]. 岩土工程学报, 2006, 28(1): 1-10.
    (LI Guang-xin.Tsinghua elastoplastic model of soil and its development[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(1): 1-10. (in Chinese))
    [17] 姚仰平. UH模型系列研究[J]. 岩土工程学报, 2015, 37(2): 193-217.
    (YAO Yang-ping.Study on UH model series[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(2): 193-217. (in Chinese))
    [18] 杨光华. 地基沉降计算的新方法及其应用[M]. 北京: 科学出版社, 2013.
    (YANG Guang-hua.New method for calculating foundation settlement and its application[M]. Beijing: Science Press, 2013. (in Chinese))
    [19] 杨光华. 地基沉降计算新方法[J]. 岩石力学与工程学报, 2008, 27(4): 680-685.
    (YANG Guang-hua.New computation method for soil foundation settlements[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(4): 680-685. (in Chinese))
    [20] GB 50007—2011建筑地基基础设计规范[S]. 2012.
    (GB 50007—2011 Code for design of foundation of building foundation[S]. 2012. (in Chinese))
    [21] 杨光华. 岩土类工程材料应力-应变本构理论的基本数学问题[C]// 岩土力学数值方法的工程应用——第二届全国岩石力学数值计算与模型实验学术研讨会论文集. 上海, 1990.
    (YANG Guang-hua.Basic mathematical problems of stress-strain constitutive theory of geotechnical engineering materials[C]// Engineering Application of Numerical Methods for Rock and Soil Mechanics - The Second National Symposium on Numerical Computation and Model Experiment of Rock Mechanics. Shanghai, 1990. (in Chinese))
    [22] 朱晟, 魏匡民, 林道通. 筑坝土石料的统一广义塑性本构模型[J]. 岩土工程学报, 2014, 36(8): 1394-1399.
    (ZHU Sheng, WEI Kuang-min, LIN Dao-tong.General generalized plastic constitutive model for dammed soil[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(8): 1394-1399. (in Chinese))
    [23] 王占军, 陈生水, 傅中志. 堆石料的剪胀特性与广义塑性本构模型[J]. 岩土力学, 2015, 36(7): 1931-1938.
    (WANG Zhan-jun, CHEN Sheng-shui, FU Zhong-zhi.Dilatancy behaviors and generalized plasticity constitutive model of rockfill materials[J]. Rock and Soil Mechanics, 2015, 36(7): 1931-1938. (in Chinese))
    [24] 邹德高, 徐斌, 孔宪京, 等. 基于广义塑性模型的高面板堆石坝静、动力分析[J]. 水力发电学报, 2011(6): 109-116.
    (ZOU De-gao, XU Bin, KONG Xian-jing, et al.A static and dynamic analysis of high-face rockfill dam based on generalized plastic model[J]. Journal of Hydroelectric Engineering, 2011(6): 109-116. (in Chinese))
    [25] 郭万里, 朱俊高, 彭文明. 粗粒土的剪胀方程及广义塑性本构模型研究[J]. 岩土工程学报, 2017, 39(8): 1-7.
    (GUO Wan-li, ZHU Jun-gao, PENG Wen-ming.Study on dilatancy equation and generalized plastic constitutive model of coarse-grained soil[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(8): 1-7. (in Chinese))
    [26] 杨光华. 岩土材料不符合Drucker公设的一个证明[J]. 岩土工程学报, 2010, 32(1): 144-146.
    (YANG Guang-hua.Geotechnical materials do not conform to a proof of Drucker's public utility[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(1): 144-146. (in Chinese))
    [27] 杨光华, 李广信. 从广义位势理论的角度看土的本构理论的研究[J]. 岩土工程学报, 2007, 29(4): 594-597.
    (YANG Guang-hua, LI Guang-xin.Study on the constitutive theory of soil from the perspective of generalized potential theory[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(4): 594-597. (in Chinese))
    [28] 杨光华. 岩土类材料的多重势面弹塑性本构模型理论[J]. 岩土工程学报, 1991, 13(5): 99-107.
    (YANG Guang-hua.Elastic -plastic constitutive model theory of multiple potential of geotechnical materials[J]. Chinese Journal of Geotechnical Engineering, 1991, 13(5): 99-107. (in Chinese)))
    [29] 杨光华. 建立弹塑性本构关系的广义塑性位势理论[C]// 全国岩土力学数值分析与解析方法讨论会. 成都, 1988.
    (YANG Guang-hua.The generalized plastic potential theory for the establishment of elastoplastic constitutive relations[C]// Symposium on Numerical Analysis and Analytical Methods for Geotechnical Mechanics. Chengdu, 1988. (in Chinese))
    [30] 杨光华. 岩土类工程材料本构方程的一个张量普遍形式定律[C]// 全国水利水电工程学青年学术讨论会. 1993.
    (YANG Guang-hua.A general law of the tensor of the constitutive equation of geotechnical engineering materials[C]// National Youth Symposium on Water Conservancy and Hydropower Engineering. 1993. (in Chinese))
    [31] 杨光华, 李广信. 岩土本构模型的数学基础与广义位势理论[J]. 岩土力学, 2002, 23(5): 531-535.
    (YANG Guang-hua, LI Guang-xin.Mathematical basis and generalized potential theory of geocontical model[J]. Rock and Soil Mechanics, 2002, 23(5): 531-535. (in Chinese))
    [32] 杨光华, 介玉新, 李广信, 等. 土的多重势面模型及其验证[J]. 岩土工程学报, 1999, 21(5): 578-582.
    (YANG Guang-hua, JIE Yu-xin, LI Guang-xin, et al.Multi-potential surface model of soil and its verification[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(5): 578-582. (in Chinese))
    [33] 杨光华, 李广信, 介玉新. 土的本构模型的广义位势理论及其应用[M]. 北京: 中国水利水电出版社, 2007.
    (YANG Guang-hua, LI Guang-xin, JIE Yu-xin.Generalized potential theory of soil constitutive model and its application[M]. Beijing: China Water Power Press, 2007. (in Chinese))
    [34] YANG G H.A new elastoplastic constitutive model for soils[C]// Proceedings of the 1st Conf on Soft Soil Eng. Beijing: Science Press, 1993.
    [35] YANG G H.A new strain space elastoplastic constitutive model for soils[J]. Proceedings of the 2nd Conf on Soft Soil Eng. Nanjing, 1996.
    [36] 杨光华. 岩土塑性本构关系的势函数理论表述问题[C]// 首届全国岩土力学与工程青年工作者学术讨论会论文集. 杭州: 浙江大学出版社, 1992.
    (YANG Guang-hua.Theoretical expression study on the potential function of the plasticity constitutive relation of rock and soil[C]// The first national symposium on geotechnical and engineering youth workers. Hangzhou: Zhejiang University Press, 1992. (in Chinese))
    [37] 沈珠江. 土的弹塑性应力应变关系的合理形式[J]. 岩土工程学报, 1980, 2(2): 11-19.
    (SHEN Zhu-jiang.An reasonable form of elastic-plastic stress-strain relationship of soil[J]. Chinese Journal of Geotechnical Engineering, 1980, 2(2): 11-19. (in Chinese))
    [38] 郑颖人. 岩土塑性力学原理:广义塑性力学[M]. 北京: 中国建筑工业出版社, 2002.
    (ZHENG Ying-ren.Principles of plasticity of geotechnics: generalized plastic mechanics[M]. Beijing: China Architecture & Building Press, 2002. (in Chinese))
    [39] 杨光华, 姚捷, 温勇. 考虑拟弹性塑性变形的土体弹塑性本构模型[J]. 岩土工程学报, 2013, 35(8): 1496-1503.
    (YANG Guang-hua, YAO Jie, WEN Yong.Elastoplastic constitutive model of soil considering pseudo-elastic plastic deformation[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1496-1503. (in Chinese))
    [40] 杨光华, 温勇, 钟志辉. 基于广义位势理论的类剑桥模型[J]. 岩土力学, 2013, 34(6): 1521-1528.
    (YANG Guang-hua, WEN Yong, ZHONG Zhi-hui.Class cambridge model based on generalized potential theory[J]. Rock and Soil Mechanics, 2013, 34(6): 1521-1528. (in Chinese))
    [41] 杨林德, 张向霞. 基于广义塑性力学的Cam-clay模型的改进[J]. 科学技术与工程, 2005(18): 1282-1286.
    (YANG Lin-de, ZHANG Xiang-xia.Improvement of Cam-clay model based on generalized plastic mechanics[J]. Science Technology and Engineering, 2005(18): 1282-1286. (in Chinese))
    [42] 周爱兆, 卢廷浩. 基于广义位势理论的接触面弹塑性本构模型[J]. 岩土工程学报, 2008, 20(10): 1532-1536.
    (ZHOU Ai-zhao, LU Ting-hao.Elastoplastic constitutive model of contact surface based on generalized potential theory[J]. Chinese Journal of Geotechnical Engineering, 2008, 20(10): 1532-1536. (in Chinese))
    [43] 杨松, 吴珺华, 卢廷浩. 引入饱和度的非饱和土双重势面本构模型[J]. 云南农业大学学报(自然科学), 2015(2): 298-302.
    (YANG Song, WU Jun-hua, LU Ting-hao.Double potential constitutive model of unsaturated soils with saturated saturation[J]. Journal of Yunnan Agricultural University (Natural Science), 2015(2): 298-302. (in Chinese))
    [44] 温勇, 杨光华, 汤连生, 等. 基于广义位势理论的土的数值弹塑性模型及其初步应用研究[J]. 岩土力学, 2016, 37(5): 1324-1332.
    (WEN Yong, YANG Guang-hua, TANG Lian-sheng, et al.Numerical elastic-plastic model of soil based on generalized potential theory and its preliminary application[J]. Rock and Soil Mechanics, 2016, 37(5): 1324-1332. (in Chinese))
    [45] SCHANZ T, VERMEER P A, BONNIER P G.Formulation and verification of the Hardening-Soil Model[C]// Beyond 2000 in Computational Geotechnics. 1999.
    [46] 杨光华, 张玉成, 张有祥. 变模量弹塑性强度折减法及其在边坡稳定分析中的应用[J]. 岩石力学与工程学报, 2009, 28(7): 1506-1512.
    (YANG Guang-hua, ZHANG Yu-cheng, ZHANG You-xiang.Application of variable modulus elastic-plastic strength reduction method and its application in slope stability analysis[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(7): 1506-1512. (in Chinese))
    [47] 杨光华. 地基非线性沉降计算的原状土切线模量法[J]. 岩土工程学报, 2006, 28(11): 1927-1931.
    (YANG Guang-hua.Nonlinear settlement computation of the soil foundation with the undisturbed soil tangent modulus method[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(11): 1927-1931. (in Chinese))
    [48] 杨光华, 骆以道, 张玉成, 等. 用简单原位试验确定切线模量法的参数及其在砂土地基非线性沉降分析中的验证[J]. 岩土工程学报, 2013, 35(3): 401-408.
    (YANG Guang-hua, LUO Yi-dao, ZHANG Yu-cheng, et al.Verify of the tangent modulus method in nonlinear settlement analysis on sandy soil[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(11): 401-408. (in Chinese))
  • 期刊类型引用(17)

    1. 刘松玉,蔡国军,赖丰文,黄明,程月红,鲁泰山. 基于CPTU/SDMT原位测试的软弱土HSS本构模型参数确定方法. 地基处理. 2024(06): 531-539 . 百度学术
    2. 邵龙潭,吴雪晴,田筱剑,郭晓霞,陈之祥. 基于图像测量三轴试验的土的本构模型构建方法. 土木工程学报. 2023(S2): 11-19 . 百度学术
    3. 刘嘉英,周伟,姬翔,魏纲,袁思莹,李欣骏. 基于细观拓扑结构演化的颗粒材料剪胀性分析. 力学学报. 2022(03): 707-718 . 百度学术
    4. 程丽,何金平. 调水工程监测效应量运行安全监控指标的分级方法. 水电与新能源. 2022(04): 6-9 . 百度学术
    5. 傅栋梁,王雅甜,蔡晓鹏. 路基堆载对邻近桥梁结构的影响及对策. 市政技术. 2022(05): 29-34 . 百度学术
    6. 钟志辉,杨光华,张玉成,温勇,官大庶. 广义位势理论本构模型的开发和验证. 长江科学院院报. 2022(07): 87-92+101 . 百度学术
    7. 安然,孔令伟,师文卓,郭爱国,张先伟. 结构性黏土的原位刚度衰减规律及数学表征. 岩土力学. 2022(S1): 410-418 . 百度学术
    8. 杨骏堂,刘元雪,郑颖人,柏准,赵久彬. 剪胀型土的试验大数据深度挖掘与本构关系研究. 岩土工程学报. 2021(03): 520-529 . 本站查看
    9. 瞿同明,冯云田,王孟琦,赵婷婷,狄少丞. 基于深度学习和细观力学的颗粒材料本构关系研究. 力学学报. 2021(09): 2404-2415 . 百度学术
    10. 马晓文,梁庆国,赵涛,周稳弟. 土动力学研究综述及思考. 世界地震工程. 2021(04): 217-230 . 百度学术
    11. 孔亮,王兴,李学丰. 非共轴次加载面模型及其对地基承载特性的模拟. 岩石力学与工程学报. 2021(12): 2535-2544 . 百度学术
    12. 聂美军,张坤勇,杜伟,李广山,张兴其. 不同本构模型在开挖边坡有限元强度折减法中的应用. 河南科学. 2021(11): 1759-1768 . 百度学术
    13. 靳军伟,李明宇,李光. 城市地下空间工程专业计算机辅助设计教学研究. 教育教学论坛. 2020(13): 288-289 . 百度学术
    14. 杨涛,霍树义,金坎辉,穆琳,周晴晴,崔建军. 冻融循环下砂岩损伤演化及本构模型. 地质与勘探. 2020(04): 826-831 . 百度学术
    15. 李慧媛,蒋雨婷,廖阳权. 渠堤工程填方渠段表面变形监测统计模型研究. 水电与新能源. 2020(09): 12-15 . 百度学术
    16. 何钰江,汤丽,胡再江,宋璟,王丹妮. 电力隧道水钻切割掘进对既有隧道的影响分析. 地下空间与工程学报. 2020(S2): 849-855 . 百度学术
    17. 陶虎,邵生俊,王正泓,张少英,石喜. 结构性参数在黄土地基沉降计算中的应用研究. 地震工程学报. 2020(06): 1604-1608+1631 . 百度学术

    其他类型引用(28)

计量
  • 文章访问数:  775
  • HTML全文浏览量:  40
  • PDF下载量:  686
  • 被引次数: 45
出版历程
  • 收稿日期:  2017-07-14
  • 发布日期:  2018-08-24

目录

    /

    返回文章
    返回