• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

饱和度对平面P波入射下自由场地地震反应的影响分析

李伟华, 郑洁

李伟华, 郑洁. 饱和度对平面P波入射下自由场地地震反应的影响分析[J]. 岩土工程学报, 2017, 39(3): 427-435. DOI: 10.11779/CJGE201703005
引用本文: 李伟华, 郑洁. 饱和度对平面P波入射下自由场地地震反应的影响分析[J]. 岩土工程学报, 2017, 39(3): 427-435. DOI: 10.11779/CJGE201703005
LI Wei-hua, ZHENG Jie. Effects of saturation on free-field responses of site due to plane P-wave incidence[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(3): 427-435. DOI: 10.11779/CJGE201703005
Citation: LI Wei-hua, ZHENG Jie. Effects of saturation on free-field responses of site due to plane P-wave incidence[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(3): 427-435. DOI: 10.11779/CJGE201703005

饱和度对平面P波入射下自由场地地震反应的影响分析  English Version

详细信息
    作者简介:

    李伟华(1976- ),女,博士,副教授,主要从事土动力学和地震工程方面的研究。E-mail: whli@bjtu.edu.cn。

Effects of saturation on free-field responses of site due to plane P-wave incidence

  • 摘要: 场地土的特性是影响场地地震反应的重要因素。以往自由场地震反应分析中常假定场地土为单相介质或两相饱和多孔介质,而在实际工程中,常会遇到非饱和土的相关问题。目前对非饱和土波动特性的研究尚处于起步阶段,关于土体饱和度的变化对自由场地地震动的影响亦只针对准饱和土(饱和度Sr≥90%)的情况。为研究Sr<90%时,饱和度变化对自由场地地震动的影响,建立了非饱和土自由场地地震反应分析模型,在现有的非饱和多孔介质波动方程的基础上,对平面P波入射情况下场地中的波场进行分析,根据场地边界条件,求得到平面P波入射情况下非饱和土自由场地地震地面运动的解析解答,通过计算,系统地分析了入射角度、频率、土层刚度、孔隙率不同时,土体饱和度变化对非饱和土自由场地地震地面运动的影响,得到了非饱和土自由场地地震反应的一般规律。
    Abstract: The property of the soil in free field is an important influencing factor for the free field seismic response. In the existing studies the soil at local site is supposed to be the single-phase medium or saturated porous medium. But in fact, it consists of solid phase, liquid phase and gas phase sometimes, and presents the porous and multi-phase characteristics. The researches on the wave characteristics of unsaturated soils are still at the initial stage. The analysis about the effects of saturation on free-field responses of site is also limited under the condition of Sr≥90%. To analyze the effects of saturation on free-field responses of site when Sr<90%, the free field model for unsaturated soils is established, and the wave fields in the free field of unsaturated soils under the P-wave incidence are analyzed. According to the boundary conditions, the undetermined coefficients of the waves are determined, and then the analytical solutions to the free site seismic ground motion of unsaturated soils are gained in the case of P-wave incidence. On the basis of analytical solutions, the effects of saturation on the free field seismic responses under different incident angles, wave frequencies, soil rigidities and porosities are analyzed. Some general rules of the seismic responses of the free site of unsaturated soils are obtained.
  • [1] BIOT M A. Theory of propagation of elastic wave in fluid- saturated porous soil[J]. Journal of Acoustical Society of America, 1956, 28(2): 168-178.
    [2] LI W H, ZHAO C G. Scattering of plane SV waves by cylindrical canyons in saturated porous medium[J]. Soil Dynamics and Earthquake Engineering, 2005, 25(12): 981-995.
    [3] LI W H, ZHAO C G, SHI P X. Scattering of plane P waves by circular-arc alluvial valleys with saturated soil deposits[J]. Soil Dynamics and Earthquake Engineering, 2005, 25(12): 997-1014.
    [4] 李伟华, 赵成刚. 饱和土沉积谷场地对平面P波的散射[J]. 岩土工程学报, 2003, 25(3): 346-351. (LI Wei-hua, ZHAO Cheng-gang. Scattering of plane P waves by alluvial valleys with saturated soil deposits[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(3): 346-351. (in Chinese))
    [5] SCHANZ M. Poroelastodynamics: linear models, analytical solutions, and numerical methods[J]. Applied Mechanics Reviews, 2009, 62(3): 030803-1-15.
    [6] YANG J. Saturation effects on horizontal and vertical motions in a layered soil-bedrock system due to inclined SV waves[J]. Soil Dynamics and Earthquake Engineering, 2001, 21(6): 527-536.
    [7] VARDOULAKIS I, BESKOS D E. Dynamic behavior of nearly saturated porous media[J]. Mechanics of Materials, 1986, 5(1): 87-108.
    [8] SANTOS J E, DOUGLAS J, CORBERO, J, et al. A model for wave-propagation in a porous-medium saturated by a 2-phase fluid[J]. Journal of Acoustical Society of America, 1990, 87(4): 1439-1448.
    [9] TUNCAY K, CORAPCIOGLU M Y. Body waves in poro- elastic media saturated by two immiscible fluids[J]. Journal of Geophysical Research, 1996, 101(B11): 25149-25159.
    [10] WEI C F, MURALEETHARAN K K. A continuum theory of porous media saturated by multiple immiscible fluids: I Linear poroelasticity[J]. International Journal of Engineering Science, 2002, 40(16): 1807-1833.
    [11] LO W C, MAJER E, SPOSITO G. Wave propagation through elastic porous media containing two immiscible fluids[J]. Water Resources Research, 2005, 41(2): 1-20.
    [12] LU J F, HANYGA A. Linear dynamic model for porous media saturated by two immiscible fluids[J]. International Journal of Solids and Structures, 2005, 42(9/10): 2689-2709.
    [13] 蔡袁强, 李保忠, 徐长节. 两种不混溶流体饱和岩石中弹性波的传播[J]. 岩石力学与工程学报, 2006, 25(10): 2009-2016. (CAI Yuan-qiang, LI Bao-zhaong, XU C J. Analysis of elastic wave propagation in sandstone saturated by two immiscible fluids[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(10): 2009-2016. (in Chinese))
    [14] ALBERS B. Analysis of the propagation of sound waves in partially saturated soils by means of a macroscopic linear poroelastic model[J]. Transport in Porous Media, 2009, 80(1): 173-192.
    [15] WEI C F. Static and dynamic behavior of multiphase porous media: governing equations and finite element implement- tation[D]. Norman: University of Oklahoma, 2001.
    [16] RAVICHANDRAN N. Fully coupled finite element model for dynamics of partially saturated soils[J]. Soil Dynamics and Earthquake Engineering, 2009, 29(9): 1294-1304.
    [17] RAVICHANDRAN N, MURALEETHARAN K K. Dynamics of unsaturated soils using various finite element formulations[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2009, 33(5): 611-631.
    [18] MAGHOUL P, GATMIRI B, DUHAMEL D. Boundary integral formulation and two-dimensional fundamental solutions for dynamic behavior analysis of unsaturated soils[J]. Soil Dynamics and Earthquake Engineering, 2011, 31(11): 1480-1495.
    [19] MOLDOVAN I D, CAO T D, Teixeira de Freitas J A. Elastic wave propagation in unsaturated porous media using hybrid-Trefftz stress elements[J]. International Journal for Numerical Methods in Engineering, 2014, 97(1): 32-67.
    [20] LO W C. Propagation and attenuation of Rayleigh waves in a semi-infinite unsaturated poroelastic medium[J]. Advances in Water Resources, 2008, 31(10): 1399-1410.
    [21] CHEN W Y, XIA T D, HU W T. A mixture theory analysis for the surface-wave propagation in an unsaturated porous medium[J]. International Journal of Solids and Structures, 2011, 48(16): 2402-2412.
    [22] CHEN W Y, XIA T D, CHEN W, et al. Propagation of plane P-waves at interface between elastic solid and unsaturated poroelastic medium[J]. Applied Mathematics and Mechanics (English Edition), 2012, 33(7): 829-844.
    [23] TOMAR S K, ASHISH ARORA. Reflection and transmission of elastic waves at an elastic/porous solid saturated by two immiscible fluids[J]. International Journal of Solids and Structures, 2006, 43(7): 1991-2013.
    [24] KUMAR R, MIGLANI A, KUMAR S. Reflection and transmission of plane waves between two different fluid saturated porous half spaces[J]. Bulletin of the Polish Academy of Sciences - Technical Science, 2011, 59(2): 227-234.
计量
  • 文章访问数:  417
  • HTML全文浏览量:  7
  • PDF下载量:  435
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-27
  • 发布日期:  2017-04-24

目录

    /

    返回文章
    返回