• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

横观各向同性砂土的强度准则

曹威, 王睿, 张建民

曹威, 王睿, 张建民. 横观各向同性砂土的强度准则[J]. 岩土工程学报, 2016, 38(11): 2026-2032. DOI: 10.11779/CJGE201611012
引用本文: 曹威, 王睿, 张建民. 横观各向同性砂土的强度准则[J]. 岩土工程学报, 2016, 38(11): 2026-2032. DOI: 10.11779/CJGE201611012
CAO Wei, WANG Rui, ZHANG Jian-min. New strength criterion for sand with cross-anisotropy[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(11): 2026-2032. DOI: 10.11779/CJGE201611012
Citation: CAO Wei, WANG Rui, ZHANG Jian-min. New strength criterion for sand with cross-anisotropy[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(11): 2026-2032. DOI: 10.11779/CJGE201611012

横观各向同性砂土的强度准则  English Version

基金项目: 国家自然科学基金项目(51038007,51079074); 铁道部科技研究开发计划重点课题(2012G013-F)
详细信息
    作者简介:

    曹 威(1991- ),男,博士研究生,研究方向为岩土工程。E-mail: caow13@mails.tsinghua.edu.cn。

New strength criterion for sand with cross-anisotropy

  • 摘要: 提出了一个物理意义清晰且满足客观性原理的横观各向同性砂土的强度准则。通过对典型试验结果的观察,总结了各向异性粒状材料峰值强度随加载方向的变化规律。分析了强度发挥的物理机制,定义了一个新的无量纲各向异性参量Λ(σ, F),用于度量应力张量与组构张量的相对方位。利用该各向异性参量将SMP准则推广,得到一个新的适用于横观各向同性砂土的强度准则。在沉积面方位已知的情况下,该准则只需确定两个试验参数kf0k,其中kf0代表基准强度,k代表各向异性程度的大小。kf0k通过两个加载方向不同的破坏试验即可确定。通过物理试验和数值试验结果初步验证了该准则的有效性。
    Abstract: It is aimed to develop a strength criterion complying with the principle of objectivity for sand with cross-anisotropy. First, how the peak strength of anisotropic granular material varies with the loading direction is observed through some typical tests. Then, the mechanism of the strength mobilizing is analyzed, and a novel dimensionless anisotropy parameter Λ(σ, F), which measures the relative direction of stress tensor and fabric tensor, is defined. Using this parameter, the spatial mobilized plane (SMP) criterion is extended to describe the strength of sand with cross-anisotropy. If the position of the depositional plane is known, there are only two parameters, kf0 and k, to be determined in the criterion. They can be both easily determined by two experiments with different loading directions. The essential effectiveness of the new criterion is confirmed by the experimental facts and numerical modeling.
  • [1] ODA M, KOISHIKAWA I, HIGUCHI T. Experimental study of anisotropic shear strength of sand by plane strain test[J]. Soils and Foundations, 1978, 18(1): 25-38.
    [2] 殷宗泽, 张坤勇, 朱俊高. 面板堆石坝应力变形计算中考虑土的各向异性[J]. 水利学报, 2004, 49(11): 22-26. (YIN Zong-ze, ZHANG Kun-yong, ZHU Jun-gao. Considering soil’s anisotropy in the calculation of stress deformation of concret-faced rockfill dam[J]. Journal of Hydraulic Engineering, 2012, 43(1): 43-50. (in Chinese))
    [3] CASAGRANDE A, CARILLO N. Shear failure of anisotropic materials[J]. Journal of Boston Society of Civil Engineers, 1944, 31(4): 74-81.
    [4] DUNCAN J M, SEED H B. Strength variation along failure surfaces in clay[J]. Journal of Soil Mechanics & Foundations, 1966, 92(6): 81-104.
    [5] ARTHUR J, MENZIES B K. Inherent anisotropy in a sand[J]. Géotechnique, 1972, 22(1): 115-128.
    [6] TATSUOKA F, NAKAMURA S, HUANG C C, et al. Strength anisotropy and shear band direction in plane strain tests of sand[J]. Soils and Foundations, 1990, 30(1): 35-54.
    [7] YMADA Y, ISHIHARA K. Anisotropic deformation characteristics of sand under three dimensional stress conditions[J]. Soils and Foundations, 1979, 19(2): 79-94.
    [8] ABELEV A V, LADE P V. Effects of cross anisotropy on three-dimensional behavior of sand I: Stress-strain behavior and shear banding[J]. Journal of Engineering Mechanics, 2003, 129(2): 160-166.
    [9] KINYA M, SEIICHI M, SHOSUKE T. Deformation behavior of anisotropic dense sand under principal stress axes rotation[J]. Soils and Foundations, 1986, 26(1): 36-52.
    [10] 于艺林, 张建民, 童朝霞, 等. 定轴排水剪切试验中各向异性砂土的力学响应[J]. 岩土力学, 2011, 32(6): 1637-1642. (YU Yi-lin, ZHANG Jian-min, TONG Zhao-xia, et al. Behavior of anisotropic mica sand under fixed principal stress axes drained shear test[J]. Chinese Journal of Rock and Soil Mechanics, 2011, 32(6): 1637-1642. (in Chinese))
    [11] RODRIGUEZ N M. Experimental study of 3D failure surface for cross-anisotropic sand deposits during stress rotation[D]. Washington D C: The Catholic University of America, 2012.
    [12] 张连卫. 各向异性粒状材料破坏规律与强度准则及应用[D]. 北京: 清华大学, 2007. (ZHANG Lian-wei. Research on failure mechanism and strength criterion of anisotropic granular materials and its application[D]. Beijing: Tsinghua University, 2007. (in Chinese))
    [13] 张 雷. 粒状介质的强度变形规律及其细观物理机制研究[D]. 北京: 清华大学, 2012. (ZHANG Lei. Micro to macro deformation and strength law for granular materials[D]. Beijing: Tsinghua University, 2012. (in Chinese))
    [14] FU P, DAFALIAS Y F. Study of anisotropic shear strength of granular materials using DEM simulation[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2011, 35(10): 1098-1126.
    [15] 陈 越. 粒状材料强度异向性的物理实质和数学表现形式[J]. 岩土工程学报, 1992, 14(1): 1-13. (CHEN Yue. Physical essence and mathematical expressions of strength-anisotropy for granular materias[J]. Chinese Journal of Geotechnical Engineering, 1992, 14(3): 1-13. (in Chinese))
    [16] PIETRUSZCZAK S, MROZ Z. Formulation of anisotropic failure criteria incorporating a microstructure tensor[J]. Computers and Geotechnics, 2000, 26(2): 105-112.
    [17] PIETRUSZCZAK S, MROZ Z. On failure criteria for anisotropic cohesive-frictional materials[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2001, 25(5): 509-524.
    [18] KONG Y, ZHAO J, YAO Y. A failure criterion for cross-anisotropic soils considering microstructure[J]. Acta Geotechnica, 2013, 8(6): 665-673.
    [19] TOBITA Y. Fabric tensors in constitutive equations for granular materials[J]. Soils and Foundations, 1989, 29(4): 91-104.
    [20] LI X S, DAFALIAS Y F. Constitutive modeling of inherently anisotropic sand behavior[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(10): 868-880.
    [21] 李学丰, 黄茂松, 钱建固. 宏细观结合的砂土各向异性破坏准则[J]. 岩石力学与工程学报, 2010, 29(9): 1885-1892. (LI Xue-feng, HUANG Mao-song, QIAN Jian-gu. Failure criterion of anisotropic sand with method of macro-meso incorporation[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(9): 1885-1892. (in Chinese))
    [22] GAO Z, ZHAO J, YAO Y. A generalized anisotropic failure criterion for geomaterials[J]. International Journal of Solids and Structures, 2010, 47(22): 3166-3185.
    [23] 罗 汀, 李 萌, 孔玉侠, 等. 基于SMP的岩土各向异性强度准则[J]. 岩土力学, 2009, 30(2). (LUO Ting, LI Meng, KONG Yu-xia, et al. Failure criterion based on SMP for anisotropic geomaterials[J]. Chinese Journal of Rock and Soil Mechanics, 2009, 30(2). (in Chinese))
    [24] 姚仰平, 孔玉侠. 横观各向同性土强度与破坏准则的研究[J]. 水利学报, 2012, 43(1): 43-50. (YAO Yang-ping, KONG Yu-xia. Research on the cross-anisotropic soil’s strength and failure criterion[J]. Journal of Hydraulic Engineering, 2012, 43(1): 43-50. (in Chinese))
    [25] 张连卫, 张建民, 张 嘎. 基于 SMP 的粒状材料各向异性强度准则[J]. 岩土工程学报, 2008, 30(8): 1107-1111. (ZHANG Lian-wei, ZHANG Jian-min, ZHANG Ga. SMP-based anisotropic strength criteria of granular materials[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 30(8): 1107-1111. (in Chinese))
    [26] 张建民. 砂土动力学若干基本理论探究[J]. 岩土工程学报, 2012, 34(1): 1-50. (ZHANG Jian-min. New advances in basic theories of sand dynamics[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 34(1): 1-50. (in Chinese))
    [27] MATSUOKA H, NAKAI T. Stress-deformation and strength characteristics of soil under three different principal stresses[J]. Doboku Gakkai Ronbunshu, JSCE, 1974, 232: 59-70.
    [28] MATSUOKA H. On the significance of the spatial mobilized plane[J]. Soils and Foundations, 1976, 16(1): 91-100.
    [29] ZHANG J M, SHAMOTO Y, TOKIMATSU K. Cyclic critical stress states of sand with nonfrictional effects[J]. Journal of Engineering Mechanics, 1999, 125(10): 1106-1114.
    [30] ODA M, NAKAYAMA H. Introduction of inherent anisotropy of soils in the yield function[J]. Micromechanics of Granular Materials, 1988, 14(1): 81-90.
计量
  • 文章访问数:  320
  • HTML全文浏览量:  3
  • PDF下载量:  335
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-05
  • 发布日期:  2016-11-19

目录

    /

    返回文章
    返回