• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于两相介质理论之土层弹塑性大变形地震反应分析

李永强, 景立平, 单振东, 张锋

李永强, 景立平, 单振东, 张锋. 基于两相介质理论之土层弹塑性大变形地震反应分析[J]. 岩土工程学报, 2015, 37(11): 1986-1991. DOI: 10.11779/CJGE201511007
引用本文: 李永强, 景立平, 单振东, 张锋. 基于两相介质理论之土层弹塑性大变形地震反应分析[J]. 岩土工程学报, 2015, 37(11): 1986-1991. DOI: 10.11779/CJGE201511007
LI Yong-qiang, JING Li-ping, SHAN Zhen-dong, ZHANG Feng. Nonlinear ground response based on the theory of wave propagation in two-phase media[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(11): 1986-1991. DOI: 10.11779/CJGE201511007
Citation: LI Yong-qiang, JING Li-ping, SHAN Zhen-dong, ZHANG Feng. Nonlinear ground response based on the theory of wave propagation in two-phase media[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(11): 1986-1991. DOI: 10.11779/CJGE201511007

基于两相介质理论之土层弹塑性大变形地震反应分析  English Version

基金项目: 国家自然科学基金项目(51408566,51308512); 中央级公益性研究所基本科研业务费专项项目(2014B03)
详细信息
    作者简介:

    李永强(1983- ),男,河南济源人,助理研究员,博士研究生,从事岩土地震工程研究。E-mail: lyqiem@163.com。

Nonlinear ground response based on the theory of wave propagation in two-phase media

  • 摘要: 基于土-水两相混合体完全耦合场方程及土体静-动统一本构,构建了新型普适性土层弹塑性大变形地震反应分析方法。考虑强震中土体大变形动力特性描述的困难,基于客观性张量推导,给出了严格的土-水两相混合体平衡方程式和连续方程式,分别进行空间和时间离散,编制了显式有限元-有限差分程序。通过超固结、结构性和应力诱导各向异性状态变量的引入,建立了物理意义明确的土体静-动统一本构,能够合理的表征土体的各类力学特性。数值计算中采用转换应力法,实现了试验应力状态向一般应力状态的拓展,满足复杂三维地层的动力计算需求。通过局部透射人工边界的设置,形成了辐射边界条件,构建了完备的土层反应程序。将分析结果与等效线性化方法和单相介质时域非线性分析结果进行对比,指出饱水砂土层的存在对地震波传播和地表地震动反应特性的影响。
    Abstract: The nonlinear ground response considering the influence of pore water pressure is implemented by a new method. The cyclic mobility (CM) model, an elastoplastic model with rotation hardening which can systematically describe the monotonic and cyclic mechanical behaviors of soils combining the subloading, normal and superloading yield surfaces, is employed in the nonlinear numerical analysis. Using the transform stress method, this model can uniquely describe the overall mechanical properties of soils under general stress states, without changing the values of parameters. Based on the CM model and two-phase field theory, an effective stress-based, fully coupled, explicit finite element-finite difference method (FE-FD) is established. The finite element method and explicit integration method are applied in spatial and temporal discretization, respectively. The multi-transmitting boundary is adopted on the artificial boundary. By introducing the Green-Naghdi rate tensor, the finite deformation analysis is presented. This method is strictly verified, and the calculated results of a real site are quite different among the authors', the equivalent linearization method and the normal nonlinear analysis method in one-phase media. The long-period value of ground response spectrum will be higher owing to sand liquefaction. Moreover, the liquefaction process of the saturated sand layer and its influence factors are also studied.
  • [1] 陈国兴. 岩土地震工程学[M]. 北京: 科学出版社, 2007. (CHEN Guo-xing. Geotechnical earthquake engineering[M]. Beijing: Science Press, 2007. (in Chinese))
    [2] SHAN Z D, LING D S, DING H J. Exact solutions to one dimensional transient response of incompressible fluid-saturated porous media[J]. Applied Mathematics and Mechanics, 2013, 34(1): 75-84.
    [3] SHAN Z D, JING L P, LING D S, et al. Exact solution for the 1D transient response of saturated single-layer poroviscoelastic media[J]. Computers and Geotechnics, 2014, 59: 98-104.
    [4] ZIENKIEWICZ O C, CHANG C T, HINTON E. Nonlinear seismic response and liquefaction[J]. Int J Numer Anal Methods Geomech, 1978, 2(4): 381-404.
    [5] ZIENKIEWICZ O C, SHIOMI T. Dynamic behavior of saturated porous media: the generalized biot formulation and its numerical solution[J]. Int J Numer Anal Methods Geomech, 1984, 8(1): 71-96.
    [6] 门福录. 波在饱含流体的孔隙介质中的传播问题[J]. 地球物理学报, 1981, 24(1): 65-76. (MEN Fu-lu. Problems of wave propagation in porous, fluid-saturated media[J]. Chinese Journal of Geophysics, 1981, 24(1): 65-76. (in Chinese))
    [7] 李永强. 基于相介质理论之一维土层非线性反应分析[D]. 哈尔滨: 中国地震局工程力学研究所, 2008. (LI Yong-qiang. 1D nonlinear ground response analysis based on the theory of wave propagation in two-phase media[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration, 2008. (in Chinese))
    [8] HASHIGUCHI K. Subloading surface model in unconventional plasticity[J]. Int J of Solids and Structures, 1989, 25(8): 917-945.
    [9] ASAOKA A, NAKANO M, NODA T. Superloading yield surface concept for highly structured soil behavior[J]. Soils and Foundations, 2000, 40(2): 99-110.
    [10] SEKIGUCHI H. Rheological characteristics of clays[C]// Proc 9th Int Conf Soil Mech, Found Eng. Tokyo, 1977.
    [11] ZHANG F, YE B, NODA T, et al. Explanation of cyclic mobility of soils: approach by stress-induced anisotropy[J]. Soils and Foundations, 2007, 47(4): 635-648.
    [12] YAO Y, ZHOU A, LU D. Extended transformed stress space for geomaterials and its application[J]. J Eng Mech, 2007, 133(10): 1115-1123.
    [13] YE B, YE G L, ZHANG F. Numerical modeling of changes in anisotropy during liquefaction using a generalized constitutive model[J]. Computers and Geotechnics, 2012, 42: 62-72.
    [14] 廖振鹏. 工程波动理论导论[M]. 2版. 北京: 科学出版社, 2002. (LIAO Zhen-peng. Introduction to wave motion theories in engineering[M]. 2nd ed. Beijing: Science Press, 2002. (in Chinese))
计量
  • 文章访问数:  337
  • HTML全文浏览量:  4
  • PDF下载量:  208
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-09-07
  • 发布日期:  2015-11-19

目录

    /

    返回文章
    返回