• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

非饱和土耦合本构模型的三维化

马田田, 韦昌富, 颜荣涛, 魏厚振, 田慧会

马田田, 韦昌富, 颜荣涛, 魏厚振, 田慧会. 非饱和土耦合本构模型的三维化[J]. 岩土工程学报, 2014, 36(2): 295-300. DOI: 10.11779/CJGE201402004
引用本文: 马田田, 韦昌富, 颜荣涛, 魏厚振, 田慧会. 非饱和土耦合本构模型的三维化[J]. 岩土工程学报, 2014, 36(2): 295-300. DOI: 10.11779/CJGE201402004
MA Tian-tian, WEI Chang-fu, YAN Rong-tao, WEI Hou-zhen, TIAN Hui-hui. SMP-based representation of a constitutive model for unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(2): 295-300. DOI: 10.11779/CJGE201402004
Citation: MA Tian-tian, WEI Chang-fu, YAN Rong-tao, WEI Hou-zhen, TIAN Hui-hui. SMP-based representation of a constitutive model for unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(2): 295-300. DOI: 10.11779/CJGE201402004

非饱和土耦合本构模型的三维化  English Version

基金项目: 国家自然科学基金项目(11072255,11302243); 广西自然科学基金重点项目(2011GXNSFE018004)
详细信息
    作者简介:

    马田田(1986- ),山东济宁人,博士研究生,主要从事非饱和土力学方面的研究工作。E-mail: matiantian050@sina.com。

  • 中图分类号: TU43

SMP-based representation of a constitutive model for unsaturated soils

  • 摘要: 非饱和土本构关系模型通常是建立在修正剑桥模型的基础上,并采用了广义的von Mises准则,以描述非饱和土在一般应力状态下的本构行为。该准则假设在π平面上屈服面是个圆形,高估了土体除三轴压缩以外的强度,在平面应变中也会错误估计中主应力比。空间滑动面破坏准则(SMP)考虑了第三应力不变量的影响,屈服面在π平面上为曲边三角形,可以较好地描述一般应力状态下土体的剪切屈服和破坏特性。采用变换应力方法,将SMP准则应用到最近建立的非饱和土耦合本构模型中使其合理的三维化,能够有效地将模型从轴对称应力状态扩展至一般应力状态。根据与试验结果对比表明,改进后的模型在不增加任何参数的情况下,能够较好地模拟非饱和土在三轴伸长等一般应力状态下的行为特性。
    Abstract:

    This page contains the following errors:

    error on line 1 at column 1: Start tag expected, '<' not found

    Below is a rendering of the page up to the first error.

  • [1] 罗 汀, 姚仰平, 松岡元. 基于SMP准则的土的平面应变强度公式[J]. 岩土力学, 2000, 21(4): 390-393. (LUO Ting, YAO Yang-ping, MATSUOKA H. Soil strength equation in plane strain based on SMP[J]. Rock and Soil Mechanics, 2000, 21(4): 390-393. (in Chiniese))
    [2] 马田田, 韦昌富, 陈 盼, 等. 非饱和土毛细滞回与变形耦合弹塑性本构模型[J]. 岩土力学, 2012, 33(11): 3263-3270. (MA Tian-tian, WEI Chang-fu, CHEN Pan, et al. An elastoplastic constitutive model of unsaturated soils with capillary hysteresis and deformation coupling[J]. Rock and Soil Mechanics, 2012, 33(11): 3263-3270. (in Chiniese))
    [3] MATSUOKA H, NAKAI T. Stress-deformation and strength characteristics of soil under three difference principal stresses[C]// Proceedings of Japan Society of Civil Engineers, 1974, 232: 59-70.
    [4] 栾茂田, 许成顺, 刘占阁, 等. 一般应力条件下土的抗剪强度参数探讨[J]. 大连理工大学学报, 2004, 44(2): 271-276. (LUAN Mao-tian, XU Cheng-shun, LIU Zhan-ge, et al. Study of shear strength parameters of soils under general stress conditions[J]. Journal of Dalian University of Technology, 2004, 44(2): 271-276. (in Chiniese))
    [5] 刘金龙, 栾茂田, 袁凡凡, 等. 中主应力对砂土抗剪强度影响的分析[J]. 岩土力学, 2005, 26(12): 1931-1935. (LIU Jin-long, LUAN Mao-tian, YUAN Fan-fan, et al. Evaluation of effect of intermediate principal stress on sand shear strength[J]. Rock and Soil Mechanics, 2005, 26(12): 1931-1935. (in Chiniese))
    [6] MATSUOKA H, SUN D A, KOGANE A, et al. Stress-strain behaviour of unsaturated soil in true triaxial tests[J]. Canadian Geotechnical Journal, 2002, 39(3): 608-619.
    [7] WROTH C P, HOULSBY G T. Soil mechanics Property characterization and analysis procedures[C]// Proceedings of 11th International Conference Soil Mechannics and Foundation Engineering, ISSMFE, San Francisco, 1985, 1: 1-55.
    [8] LADE P V, DUNCAN J M. Elastoplastic stress-strain theory for cohesionless soil[J]. Journal of Geotechnology Engineering, 1975, 101(10): 1037-1053.
    [9] MATSUOKA H, YAO Y P, SUN D A. The Cam-clay models revised by the SMP criterion[J]. Soils and Foundations, 1999, 33(1): 81-95.
    [10] YAO Y P, SUN D A, MATSUOKA H. A unified constitutive model for both clay and sand with hardening parameter independent on stress path[J]. Computers and Geotechnics, 2008, 35(2): 210-222.
    [11] WEI C F, DEWOOLKAR M M. Formulation of capillary hysteresis with internal state variables[J]. Water Resources Research. 2006, 42(7): 1-16.
    [12] VANAPALLI S K, FREDLUND D G, PUFAHL D E. The influence of soil structure and stress history on the soil-water characteristics of a compacted till[J]. Géotechnique, 1999, 49(2): 143-158.
    [13] FENG M, FREDLUND D G. Hysteresis influence associated with thermal conductivity sensor measurements[C]// 52nd Canadian Geotechnical Conference and Unsaturated Soil Group, Proceedings from Theory to the Practice of Unsaturated Soil Mechanics. Regina, 1999: 651-657.
    [14] SUN D A, CUI H B, MATSUOKA H, et al. A three-dimensional elastoplastic model for unsaturated compacted soils with hydraulic hysteresis[J]. Soils and Foundations, 2007, 27(2): 253-264.
计量
  • 文章访问数:  343
  • HTML全文浏览量:  3
  • PDF下载量:  315
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-04-10
  • 发布日期:  2014-02-20

目录

    /

    返回文章
    返回