• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LIU Xinyu, CHI Mingjie, CHEN Xueliang. Distribution characteristics of dynamic parameter curves of different soils and their effects on ground motion[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S2): 229-234. DOI: 10.11779/CJGE2023S20032
Citation: LIU Xinyu, CHI Mingjie, CHEN Xueliang. Distribution characteristics of dynamic parameter curves of different soils and their effects on ground motion[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S2): 229-234. DOI: 10.11779/CJGE2023S20032

Distribution characteristics of dynamic parameter curves of different soils and their effects on ground motion

More Information
  • Received Date: November 29, 2023
  • Available Online: April 19, 2024
  • The dynamic shear modulus ratio and damping ratio are the important dynamic parameters that characterize the nonlinear characteristics of soils, and are also one of the important factors affecting the seismic response characteristics of the site. The statistical analysis on common soil types in multiple literatures is conducted, and obtains the corresponding distribution characteristics of dynamic parameter curves of soils are obtained. Based on this, the influence characteristics and laws of the distribution characteristics of dynamic shear modulus ratio and damping ratio curves of soils on site effects are studied. The research results indicate that there is a certain degree of difference between the average and recommended values of the two dynamic curves of various types of soils, but the overall trend is consistent. Among them, the distribution of the two dynamic curves of soil types such as sand, clay, gravel soil and muddy soil has their own characteristics. Due to the combined influences of the dynamic shear modulus ratio and damping ratio, the site effects of each component of seismic motion exhibit different characteristics, generally manifested as low-frequency amplification effects and high-frequency filtering effects. The soil types with different distribution characteristics of dynamic shear modulus ratio and damping ratio have different degrees of influences on the two effects.
  • [1]
    陈国兴. 岩土地震工程学[M]. 北京: 科学出版社, 2007: 150-151.

    CHEN Guoxing. Geotechnical Earthquake Engineering[M]. Beijing: Science Press, 2007: 150-151. in Chinese
    [2]
    袁晓铭, 孙锐, 孙静, 等. 常规土类动剪切模量比和阻尼比试验研究[J]. 地震工程与工程振动, 2000, 20(4): 133-139. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC200004021.htm

    YUAN Xiaoming, SUN Rui, SUN Jing, et al. Laboratory experimental study on dynamic shear modulus ratio and damping ratio of soils[J]. Earthquake Engineering and Engineering Vibration, 2000, 20(4): 133-139. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC200004021.htm
    [3]
    陈国兴, 刘雪珠, 朱定华, 等. 南京新近沉积土动剪切模量比与阻尼比的试验研究[J]. 岩土工程学报, 2006, 28(8): 1023-1027. doi: 10.3321/j.issn:1000-4548.2006.08.018

    CHEN Guoxing, LIU Xuezhu, ZHU Dinghua, et al. Experimental studies on dynamic shear modulus ratio and damping ratio of recently deposited soils in Nanjing[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(8): 1023-1027. (in Chinese) doi: 10.3321/j.issn:1000-4548.2006.08.018
    [4]
    陈国兴, 卜屹凡, 周正龙, 等. 沉积相和深度对第四纪土动剪切模量和阻尼比的影响[J]. 岩土工程学报, 2017, 39(7): 1344-1350. doi: 10.11779/CJGE201707022

    CHEN Guoxing, BU Yifan, ZHOU Zhenglong, et al. Influence of sedimentary facies and depth on normalized dynamic shear modulus and damping ratio of quaternary soils[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(7): 1344-1350. (in Chinese) doi: 10.11779/CJGE201707022
    [5]
    孔宇阳, 廉超, 李井冈, 等. 武汉地区典型土类动力非线性参数的统计分析[J]. 地震工程学报, 2014, 36(4): 832-837. doi: 10.3969/j.issn.1000-0844.2014.04.0832

    KONG Yuyang, LIAN Chao, LI Jinggang, et al. Statistical analysis of dynamic nonlinear parameters of typical soils in Wuhan area[J]. China Earthquake Engineering Journal, 2014, 36(4): 832-837. (in Chinese) doi: 10.3969/j.issn.1000-0844.2014.04.0832
    [6]
    李建有, 太树刚, 林凤仙, 等. 昆明盆地粉质黏土土动力参数研究[J]. 震灾防御技术, 2015, 10(4): 872-883.

    LI Jianyou, TAI Shugang, LIN Fengxian, et al. Research on dynamic parameters of silty clay in the Kunming Basin[J]. Technology for Earthquake Disaster Prevention, 2015, 10(4): 872-883. (in Chinese)
    [7]
    宋前进, 程磊, 贺为民. 豫东平原粉质黏土动剪切模量与阻尼比试验研究[J]. 地震工程学报, 2020, 42(4): 1013-1018. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ202004026.htm

    SONG Qianjin, CHENG Lei, HE Weimin. Experimental study of the dynamic shear modulus and damping ratio of silty clay on eastern Henan Plain[J]. China Earthquake Engineering Journal, 2020, 42(4): 1013-1018. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ202004026.htm
    [8]
    孙锐, 陈红娟, 袁晓铭. 土的非线性动剪切模量比和阻尼比不确定性分析[J]. 岩土工程学报, 2010, 32(8): 1228-1235. http://cge.nhri.cn/cn/article/id/13480

    SUN Rui, CHEN Hongjuan, YUAN Xiaoming. Uncertainty of non-linear dynamic shear modular ratio and damping ratio of soils[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(8): 1228-1235. (in Chinese) http://cge.nhri.cn/cn/article/id/13480
    [9]
    钟紫蓝, 史跃波, 李锦强, 等. 考虑土体动力特征参数相关性的工程场地随机地震反应分析[J]. 岩土力学, 2022, 43(7): 2015-2024, 2033. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202207027.htm

    ZHONG Zilan, SHI Yuebo, LI Jinqiang, et al. Stochastic seismic response analysis of engineering site considering correlations of critical soil dynamic parameters[J]. Rock and Soil Mechanics, 2022, 43(7): 2015-2024, 2033. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202207027.htm
  • Related Articles

    [1]LIU Jie, FENG Shi-guo, LI Tian-bin, WANG Rui-hong, LEI Lan, WANG Fei. Prediction of dynamic response of rock under impact loads[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(11): 2022-2030. DOI: 10.11779/CJGE201811008
    [2]ZHOU Xiao-zhi, CHEN Yu-min, LIU Han-long. Study on characteristics of dynamic stress path of finite-thickness seabed under standing waves[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 890-899. DOI: 10.11779/CJGE201805014
    [3]XIE Can, LI Shu-chen, YAN Qin, LI Jing-long, ZHAO Shi-seng. Photoelastic experiments on failure characteristics of fractured rock with different sizes[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(3): 568-575. DOI: 10.11779/CJGE201803023
    [4]GAO Bo, WANG Shuai-shuai, SHEN Yu-sheng, FAN Kai-xiang. Dynamic stress concentration and damping mechanism of twin cylindrical composite-lined tunnels subjected to vertical incident plane SV waves[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(2): 321-328. DOI: 10.11779/CJGE201802013
    [5]LIANG Jian-wen, HU Song-lin, LIU Zhong-xian, BA Zhen-ning. Dynamic response of 3D spherical cavity in elastic half-space under plane SV waves[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(9): 1559-1568. DOI: 10.11779/CJGE201609002
    [6]WANG Zhong-tao, LIU Peng, YANG Qing. Dynamic strength of saturated loose sand under nonstandard elliptical stress path[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(6): 1133-1139. DOI: 10.11779/CJGE201606021
    [7]LIU You-ping, GONG Min, XU Bin, LI Jian-hua. Dynamic response of multiple holes in half saturated space impacted by seismic waves[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk1): 399-405.
    [8]LI Xing-hua, LONG Yuan, JI Chong, ZHOU Xiang, LU Liang. Dynamic stress concentration factor for tunnel surrounding rock under blasting seismic waves[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(3): 578-582.
    [9]LIANG Jianwen, ZHANG Hao, Vincent W. LEE. An analytical solution for dynamic stress concentration of underground cavities under incident plane P waves[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(6): 815-819.
    [10]Cheng Jiulong. The dynamic detection of rock mass failure by elastic wave computerized tomography[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(5): 565-568.

Catalog

    Article views (66) PDF downloads (20) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return