• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
AN Yijing, HAN Pengju, QIN Jiandong, BAI Xiangling, HE Bin, WANG Xiaoyuan. Seismic response analysis of leaning Wenfeng Pagoda considering soil-structure interaction[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S2): 201-207. DOI: 10.11779/CJGE2023S20028
Citation: AN Yijing, HAN Pengju, QIN Jiandong, BAI Xiangling, HE Bin, WANG Xiaoyuan. Seismic response analysis of leaning Wenfeng Pagoda considering soil-structure interaction[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S2): 201-207. DOI: 10.11779/CJGE2023S20028

Seismic response analysis of leaning Wenfeng Pagoda considering soil-structure interaction

  • In order to study the seismic response of the leaning pagoda under soil-structure interaction, two kinds of finite element models for the leaning and un-leaning Wenfeng Pagoda of Yongzuo Temple are established by using the ABAQUS finite element software, adopting the equivalent linearization of foundation soils and non-linearization of masonry materials, considering the geometric non-linearities of the soil-structure separation and slip, and adding the visco-elastic artificial boundaries with the help of python language. By comparing the two models through the time-range analysis method, the effects of inclination factor on the seismic performance of the pagoda are investigated. The results show that under the action of small earthquakes, the historical maximum tilt has less impact on its seismic performance, and the peak displacement, section displacement angle and acceleration amplification coefficient have small increase. Under the action of middle earthquakes, the residual displacement of the leaning pagoda increases greatly, the lower layer of the pagoda section displacement angle is generally enlarged, the acceleration amplification coefficient increases, the damage area and degree of the pagoda in the leaning side increase dramatically, and the foundation damage should not be neglected. The analysis results can provide a reference for the seismic protection of similar leaning high-rise dense eaves brick pagodas.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return