• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Weidong. Analytical methods and controlling techniques for deformation and environmental influence of deep excavations in soft soils[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(1): 1-25. DOI: 10.11779/CJGE20231146
Citation: WANG Weidong. Analytical methods and controlling techniques for deformation and environmental influence of deep excavations in soft soils[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(1): 1-25. DOI: 10.11779/CJGE20231146

Analytical methods and controlling techniques for deformation and environmental influence of deep excavations in soft soils

More Information
  • Received Date: November 29, 2023
  • Available Online: November 23, 2023
  • It has become a challenge to accurately estimate and reasonably control excavation-induced deformations as well as consequent influences in soft soil areas with the increasing excavation scale and complexity of adjacent facilities. The analytical methods and controlling techniques for the excavation-induced deformations and their subsequent influences have been systematically investigated. The environmental protection grade and deformation controlling standard for the excavations in soft soils are proposed considering synthetically both safety and economy aspects, which provides a basis for protection of different types of facilities close to the excavations. Furthermore, a simplified analysis method is established, helping engineers to get a quick estimation of excavation-induced influences. A sophisticated analytical method considering small strain stiffness of soils is introduced, and a practical method to determine the parameters of small strain constitutive model is proposed, making it possible to evaluate the excavation-induced deformations properly in engineering practices. To tackle the difficulty of quantifying the impact of aquifer pumping, a computational method is proposed to determine the key hydrogeological parameters and to evaluate the pumping-induced deformations based on the field group well pumping tests. Moreover, various green, low-carbon and low-environment-impact controlling techniques are proposed, including preliminary and permanent combination techniques, digital micro-disturbance soil mixing piles, automatically force-compensating concrete struts, ultra-deep soil mixing walls etc. The proposed methods and techniques have been successfully applied in many excavations, promoting further development of fine evaluation methods for the excavation-induced deformations and active protection techniques for complex facilities in urban areas and proactive providing technical support for the development and utilization of underground space.
  • [1]
    王卫东, 丁文其, 杨秀仁, 等. 基坑工程与地下工程: 高效节能、环境低影响及可持续发展新技术[J]. 土木工程学报, 2020, 53(3): 78-98.

    WANG Weidong, DING Wenqi, YANG Xiuren, et al. Deep excavation engineering and underground engineering: new techniques of high-efficiency and energy-saving, low environmental impact, and sustainable development[J]. China Civil Engineering Journal, 2020, 53(7): 78-98. (in Chinese)
    [2]
    翁其平, 王卫东. 软土超深基坑工程关键技术问题研究[J/OL]. 地基处理, 2022: 1-9(2022-110-115). https://kns.cnki.net/kcms/detail/33.1416.TU.20221124.1913.002.html.

    WENG Qiping, WANG Weidong. Key technical problems of super-deep foundation pit engineering in soft soils[J/OL]. Journal of Ground Improvement, 2022: 1-9(2022- 110-115). https://kns.cnki.net/kcms/detail/33.1416.TU.20221124.1913.002.html. (in Chinese)
    [3]
    BURLAND J B, WROTH C P. Settlement of buildings and associated damage[C]// Proceedings of the Conference on Settlement of Structures, London, 1974: 611-654.
    [4]
    BJERRUM L. Allowable settlements of structures[C]// Proceedings of the European Conference on Soil Mechanics and Foundation Engineering, London, 1963.
    [5]
    OU Changyu. Deep Excavation-Theory and Practice[M]. Leiden: Taylor & Francis, 2006.
    [6]
    建筑地基基础设计规范: GB50007—2011[S]. 北京: 中国计划出版社, 2012.

    Code for Design of Building Foundation: GB50007—2011[S]. Beijing: China Planning Press, 2012. (in Chinese)
    [7]
    徐中华, 王卫东. 深基坑变形控制指标研究[J]. 地下空间与工程学报, 2010, 6(3): 619-625.

    XU Zhonghua, WANG Weidong. Deformation control criteria of deep excavations[J]. Chinese Journal of Underground Space and Engineering, 2010, 6(3): 619-625. (in Chinese)
    [8]
    城市轨道交通工程监测技术规范: GB50911—2013[S]. 北京: 中国建筑工业出版社, 2013.

    Code for Monitoring Measurement of Urban Rail Transit Engineering: GB50911—2013[S]. Beijing: China Architecture and Building Press, 2013. (in Chinese)
    [9]
    给水排水管道工程施工及验收规范: GB50268—2008[S]. 北京: 中国建筑工业出版社, 2008.

    Code for Construction and Acceptance of Water and Sewerage Pipeline Works: GB50268—2008[S]. Beijing: China Architecture and Building Press, 2008. (in Chinese)
    [10]
    上海市住房和城乡建设管理委员会. 城市轨道交通结构安全保护技术标准: DG/TJ 08-2434-2023[S]. 北京: 中国建筑工业出版社, 2023.

    Department of Housing and Urban-Rural Development of Shanghai. Technical Standard for Protection of Urban Rail Transit Structures: DBJ/T 15-120-2017[S]. Beijing: China Architecture and Building Press, 2017. (in Chinese)
    [11]
    广东省住房和城乡建设厅. 城市轨道交通既有结构保护技术规范:

    DBJ/T 15-120-2017[S]. 2017. (Department of Housing and Urban-Rural Development of Guangdong Province. Technical Code for Protection of Existing Structures of Urban Rail Transit: DBJ/T 15-120-2017[S]. 2017. (in Chinese)
    [12]
    城市轨道交通结构安全保护技术规范: CJJ/T202—2013[S]. 北京: 中国建筑工业出版社, 2014.

    Technical Code for Protection Structures of Urban Rail Transit: CJJ/T202—2013[S]. Beijing: China Architecture and Building Press, 2014. (in Chinese)
    [13]
    CLOUGH G W, O'ROURKE T D. Construction induced movements of in situ walls[C]// Proceedings of Design and Performance of Earth Retaining Structures, Geotechnical Special Publication 25-ASCE, 1990: 439-470.
    [14]
    HSIEH P G, OU C Y. Shape of ground surface settlement profiles caused by excavation[J]. Canadian Geotechnical Journal, 1998, 35(6): 1004-1017. doi: 10.1139/t98-056
    [15]
    王卫东, 徐中华, 王建华. 上海地区深基坑周边地表变形性状实测统计分析[J]. 岩土工程学报, 2011, 33(11): 1659-1666. http://cge.nhri.cn/cn/article/id/14412

    WANG Weidong, XU Zhonghua, WANG Jianhua. Statistical analysis of characteristics of ground surface settlement caused by deep excavations in Shanghai soft soils[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(11): 1659-1666. (in Chinese) http://cge.nhri.cn/cn/article/id/14412
    [16]
    上海市住房和城乡建设管理委员会. 基坑工程技术标准:

    DG/TJ 08-61-2018[S]. 2018. (Department of Housing and Urban-Rural Development of Shanghai. Technical Code for Excavation Engineering: DG/TJ 08-61-2018[S]. 2018. (in Chinese)
    [17]
    徐中华, 王卫东. 敏感环境下基坑数值分析中土体本构模型的选择[J]. 岩土力学, 2010, 31(1): 258-264.

    XU Zhonghua, WANG Weidong. Selection of soil constitutive models for numerical analysis of deep excavations in close proximity to sensitive properties[J]. Rock and Soil Mechanics, 2010, 31(1): 258-264. (in Chinese)
    [18]
    ATKINSON J H. Non-linear soil stiffness in routine design[J]. Géotechnique, 2000, 50(5): 487-508. doi: 10.1680/geot.2000.50.5.487
    [19]
    BENZ T. Small-Strain Stiffness of Soils and Its Numerical Consequence[D]. Stuttgart: Institute of Geotechnical Engineering, University of Stuttgart, 2007.
    [20]
    王卫东, 李青, 徐中华, 等. 软黏土小应变本构模型参数研究与应用[J]. 地下空间学报, 2023, 19(3): 844-855.

    WANG Weidong, LI Qing, XU Zhonghua, et al. Investigation and application of small-strain model parameters for soft clay deposits[J]. Chinese Journal of Underground Space and Engineering, 2023, 19(3): 844-855. (in Chinese)
    [21]
    王卫东, 王浩然, 徐中华. 基坑开挖数值分析中土体硬化模型参数的试验研究[J]. 岩土力学, 2012, 33(8): 2283-2290.

    WANG Weidong, WANG Haoran, XU Zhonghua. Experimental study of parameters of hardening soil model for numericalanalysis of excavations of foundation pits[J]. Rock and Soil Mechanics, 2012, 33(8): 2283-2290. (in Chinese)
    [22]
    SCHWEIGER H F. Design of deep excavations with FEM-influence of constitutive model and comparison of EC7 design approaches[C]// The Proceedings of the 2010 Earth Retention Conference. Washington, 2010.
    [23]
    OU C Y, SHIAU B Y, WANG I W. Three-dimensional deformation behavior of the Taipei National Enterprise Center (TNEC) excavation case history[J]. Canadian Geotechnical Journal, 2000, 37(2): 438-448. doi: 10.1139/t00-018
    [24]
    RAMPELLO S, VIGGIANI G M B, AMOROSI A. Small-strain stiffness of reconstituted clay compressed along constant triaxial effective stress ratio paths [J]. Géotechnique, 1997, 47(3): 475-489. doi: 10.1680/geot.1997.47.3.475
    [25]
    CLAYTON C R I, HEYMANN G. Stiffness of geomaterials at very small strains[J]. Géotechnique, 2001, 51(3): 245-255. doi: 10.1680/geot.2001.51.3.245
    [26]
    王浩然. 上海软土地区深基坑变形与环境影响预测方法研究[D]. 上海: 同济大学, 2012.

    WANG Haoran. Prediction of Deformation and Response of Adjacent Environment of Deep Excavation in Shanghai Soft Deposit[D]. Shanghai: Tongji University, 2012. (in Chinese)
    [27]
    宗露丹, 徐中华, 翁其平, 等. 小应变本构模型在超深大基坑分析中的应用[J]. 地下空间与工程学报, 2018, 15(增刊1): 231-242.

    ZONG Ludan, XU Zhonghua, WENG Qiping, et al. Application of small strain constitutive model in the analysis of a ultra large and deep excavation[J]. Chinese Journal of Underground Space and Engineering, 2018, 15(S1): 231-242. (in Chinese)
    [28]
    李靖, 徐中华, 王卫东. 基础托换对基坑周边建筑物变形控制作用的三维有限元分析[J]. 岩土工程学报, 2017, 39(增刊2): 157-161. doi: 10.11779/CJGE2017S2039

    LI Jing, XU Zhonghua, WANG Weidong. Three-dimensional finite element analysis of effects of foundation underpinning on deformation control of existing buildings adjacent to a deep excavation [J]. Chinese Journal of Geotechnical Engineering, 2017, 39(S2): 157-161. (in Chinese) doi: 10.11779/CJGE2017S2039
    [29]
    张娇. 上海软土小应变特性及其在基坑变形分析中的应用[D]. 上海: 同济大学, 2017.

    ZHANG Jiao. Small Strain Stiffness Properties of Shanghai Soft Soils and Application in Deformation Analysis of Deep Excavations[D]. Shanghai: Tongji University, 2017. (in Chinese)
    [30]
    王卫东, 王浩然, 徐中华. 上海地区基坑开挖数值分析中土体HS-Small模型参数的研究[J]. 岩土力学, 2013, 34(6): 1766-1744.

    WANG Weidong, WANG Haoran, XU Zhonghua. Study of parameters of HS-Small model used in numerical analysis of excavations in Shanghai area [J]. Rock and Soil Mechanics, 2013, 34(6): 1766-1744. (in Chinese)
    [31]
    徐中华, 李靖, 张娇, 等. 基于小应变土体本构模型的逆作法深基坑三维有限元分析[C]// 第九届全国基坑工程研讨会, 郑州, 2016.

    XU Zhonghua, LI Jing, ZHANG Jiao, et al. Three-dimensional finite element analysis of a top-down excavation using small strain soil model[C]// Proceedings of the Ninth Symposium of Excavation Engineering, Zhengzhou, 2016. (in Chinese)
    [32]
    张娇, 王卫东, 李靖, 等. 分区施工基坑对邻近隧道变形影响的三维有限元分析[J]. 建筑结构, 2017, 47(2): 90-95.

    ZHANG Jiao, WANG Weidong, LI Jing, et al. Three-dimensional finite element analysis of the impact of zoned excavation on adjacent tunnels[J]. Building Structure, 2017, 47(2): 90-95. (in Chinese)
    [33]
    BIOT M A. General theory of three-dimension-consolidation [J]. Journal of Applied Physics, 1942, 12(2): 155-164.
    [34]
    王卫东, 王建华. 支护结构与主体结构相结合的设计分析与实例[M]. 北京: 中国建筑工业出版社, 2007.

    WANG Weidong, WANG Jianhua. Design, Analysis and Case Histories of Deep Excavations Supported by Permanent Structures[M]. Beijing: China Architecture & Building Press, 2007. (in Chinese)
    [35]
    王建华, 徐中华, 王卫东. 支护结构与主体地下结构相结合的深基坑变形特性分析[J]. 岩土工程学报, 2007, 29(12): 1899-1903. http://cge.nhri.cn/cn/article/id/12713

    WANG Jianhua, XU Zhonghua, WANG Weidong. Analysis of deformation behavior of deep excavations supported by permanent structure[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(12): 1899-1903. (in Chinese) http://cge.nhri.cn/cn/article/id/12713
    [36]
    王卫东, 徐中华, 宗露丹, 等. 上海国际金融中心超深大基坑工程变形性状实测分析[J]. 建筑结构, 2020, 50(18): 126-135.

    WANG Weidong, XU Zhonghua, ZONG Ludan, et al. Field measurement and analysis on deformation behavior of extreme deep and large foundation pit engineering of Shanghai International Financial Center[J]. Building Structure, 2020, 50(18): 126-135. (in Chinese)
    [37]
    建筑工程逆作法技术标准: JGJ 432—2018[S]. 北京: 中国建筑工业出版社, 2018.

    Technical Standards for Top-Down Method of Building Engineering: JGJ 432—2018[S]. Beijing: China Architecture and Building Press, 2018. (in Chinese)
    [38]
    徐中华, 李靖, 王卫东. 基坑工程平面竖向弹性地基梁法中土的水平抗力比例系数反分析研究[J]. 岩土力学, 2014, 35(增刊2): 398-404.

    XU Zhonghua, LI Jing, WANG Weidong. Back analysis of proportional coefficient of horizontal resistance in vertical elastic subgrade beam method for deep excavations [J]. Rock and Soil Mechanics, 2014, 35(S2): 398-404. (in Chinese)
    [39]
    李青, 杜策, 王理想, 等. 数字化微扰动搅拌桩技术与现场试验研究[J]. 施工技术, 2023, 52(11): 113-118.

    LI Qing, DU Ce, WANG Lixiang and YU Wenbo. Development and field testing of digital micro-disturbance soil mixing pile technique[J]. Construction Technology, 2023, 52(11): 113-118. (in Chinese)
    [40]
    徐中华, 宗露丹, 沈健, 等. 邻近地铁隧道的软土深基坑变形实测分析[J]. 岩土工程学报, 2019, 41(增刊1): 41-44. doi: 10.11779/CJGE2019S1011

    XU Zhonghua, ZONG Ludan, SHEN Jian, et al. Deformation of a deep excavation adjacent to metro tunnels in soft soils[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S1): 41-44. (in Chinese) doi: 10.11779/CJGE2019S1011
    [41]
    王卫东. 超深等厚度水泥土搅拌墙技术与工程应用实例[M]. 北京: 中国建筑工业出版社, 2017.

    WANG Weidong. Technology and Practice of Uniformly Thick Soil Mixing Wall[M]. Beijing: China Architecture & Building Press, 2017. (in Chinese)
    [42]
    王卫东. 超深超大直径超高压喷射注浆技术研发与应用[R]. 上海: 华东建筑设计研究院有限公司, 2022.

    WANG Weidong. Research and Application of Ultra-Deep and Ultra-Large High-Pressure Jet Grouting Technique[R]. Shanghai: East China Architecture Design & Research Institute, 2022. (in Chinese)
    [43]
    王卫东, 常林越, 谭轲. 超深TRD工法控制承压水的邻近地铁深基坑工程设计与实践[J]. 建筑结构, 2014, 44(17): 56-62.

    WANG Weidong, CHANG Linyue, TAN Ke. Design and practice of a deep foundation pit project adjacent to subway tunnel usingsuper deep TRD construction method to control confined water[J]. Building Structure, 2014, 44(17): 56-62. (in Chinese)
    [44]
    谭轲, 王卫东, 邸国恩. TRD工法型钢水泥土搅拌墙的承载变形性状分析[J]. 岩土工程学报, 2015, 37(增刊2): 191-196. doi: 10.11779/CJGE2015S2037

    TAN Ke, WANG Weidong, DI Guoen. Deformation and bearing characteristics of steel cement-soil wall constructed by TRD method[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(S2): 191-196. (in Chinese) doi: 10.11779/CJGE2015S2037
    [45]
    王卫东, 邸国恩. TRD工法等厚度水泥土搅拌墙技术与工程实践[J]. 岩土工程学报, 2012, 34(增刊1): 628-634. http://cge.nhri.cn/cn/article/id/14829

    WANG Weidong, DI Guoen. Engineering practices of constant thickness steel cement-soil wall constructed by TRD method[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(S1): 628-634. (in Chinese) http://cge.nhri.cn/cn/article/id/14829
    [46]
    王卫东, 翁其平, 陈永才. 56 m深TRD工法搅拌墙在深厚承压含水层中的成墙试验研究[J]. 岩土力学, 2014, 35(11): 3247-3252.

    WANG Weidong, WENG Qiping, CHEN Yongcai. Experimental investigation of construction of a 56 m deep constant thickness cement-soil wall using trench cutting re-mixing deep wall (TRD) method in deep aquifers[J]. Rock and Soil Mechanics, 2014, 35(11): 3247-3252. (in Chinese)
    [47]
    王卫东, 陈永才, 吴国明. TRD水泥土搅拌墙施工环境影响分析及微变形控制措施[J]. 岩土工程学报, 2015, 37(增刊1): 1-5. doi: 10.11779/CJGE2015S1001

    WANG Weidong, CHEN Yongcai, WU Guoming. Impact analysis and micro-deformation control measures of TRD construction cement-soil mixing wall[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(S1): 1-5. (in Chinese) doi: 10.11779/CJGE2015S1001
    [48]
    王卫东, 邸国恩, 王向军. TRD工法构建的等厚度型钢水泥土搅拌墙支护工程实践[J]. 建筑结构, 2012, 42(5): 168-171.

    WANG Weidong, DI Guo'en, WANG Xiangjun. Engineering practice of the constant thickness steel cement-soil wall constructed by TRD method [J]. Building Structure, 2012, 42(5): 168-171. (in Chinese)
    [49]
    邸国恩, 黄炳德, 王卫东. 敏感环境深基坑工程TRD工法等厚度水泥土搅拌墙设计与实践[J]. 岩土工程学报, 2014, 36(增刊1): 25-30. doi: 10.11779/CJGE2014S1004

    DI Guoen, HUANG Bingde and WANG Weidong. Design and application of constant thickness cement-soil wall constructed by TRD method in deep excavations with sensitive surroundings[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(S1): 25-30. (in Chinese) doi: 10.11779/CJGE2014S1004
    [50]
    黄炳德, 王卫东, 邸国恩. 上海软土地层中TRD水泥土搅拌墙强度检测与分析[J]. 土木工程学报, 2015, 48(增刊2): 1-5.

    HUANG Bingde, WANG Weidong, DI Guoen. Test and analysis of strength of cement-soil wall constructed by TRD method in soft soil of Shanghai [J]. China Civil Engineering Journal, 2015, 48(S2): 1-5. (in Chinese)
    [51]
    聂书博, 常林越, 朱士传, 等. N-Jet工法在超深基坑工程中对承压水控制应用研究[C]// 第四届全国岩土工程施工技术与装备创新论坛, 无锡, 2023: 180-186.

    NIE Shubo, CHANG Linyue, ZHU Shichuan, et al. Investigation on application of N-Jet ultra high pressure jet grouting in controlling confined aquifer[C]// The Proceedings of the Fourth Symposium of New Process in Construction Technology and Equipment of Geotechnical Engineering. Wuxi, 2023: 180-186. (in Chinese)
  • Related Articles

    [1]LI Cheng-wei, LIANG Zhi-rong, WEI Xiang, WANG Guo-cui. Application of CSM method in control of confined groundwater of deep excavations in soft soils[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 125-128. DOI: 10.11779/CJGE2019S2032
    [2]ZHANG Bo, YANG Wei-hao, WANG Bao-sheng. Elastoplastic design theory for ultra-deep frozen wall considering large deformation features[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(7): 1288-1295. DOI: 10.11779/CJGE201907013
    [3]CHEN Peng-fei, GONG Xiao-nan, LIU Nian-wu. Effect of curtain’s role in retaining on deformation of deep excavations[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk2): 254-258. DOI: 10.11779/CJGE2014S2044
    [4]QIN Hui-lai, LI Feng, GUO Yuan-cheng. Three-dimensional finite-element analysis of panel installation of a ultra-deep diaphragm wall[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 335-340.
    [5]WANG Wei-dong, DI Guo-en. Engineering practices of constant thickness steel cement-soil wallconstructed by TRD method[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(suppl): 628-633.
    [6]TANG Jun. Design and construction of water-sealing curtain in deep excavations in sand layer adjacent to sea[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(suppl): 548-551.
    [7]JIA Jin-qing, TU Bing-xiong. Application of flexible retaining method with prestressed anchors in ultra-deep excavations[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(suppl): 530-535.
    [8]TANG Jun. Design and analysis of retaining structures for a super-deep excavationin Shanghai using late-dismantling support[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(suppl): 451-455.
    [9]YANG Xue-lin. Application and development of new technology for support of deep excavations in coastal areas of Zhejiang[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(suppl): 33-39.
    [10]WANG Jianhua, XU Zhonghua, WANG Weidong. Analysis of deformation behavior of deep excavations supported by permanent structure[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(12): 1899-1903.
  • Cited by

    Periodical cited type(26)

    1. 苏宇. 敏感环境下地下水池基坑围护施工技术. 山西建筑. 2025(02): 68-71+81 .
    2. 刘长云. 邻近轨道交通深基坑支护设计实践与变形控制研究. 城市建设理论研究(电子版). 2025(02): 201-204+151 .
    3. 李成,刘红军,张秋虎. 土体参数对基坑支护及邻近建筑物变形影响的研究. 五邑大学学报(自然科学版). 2025(01): 8-15 .
    4. 姜如英. 黏粉土互层软土环境下深基坑降水技术研究与风险管控. 建筑施工. 2025(01): 94-97+107 .
    5. 侯泽洋. 深基坑工程施工对临近地铁隧道结构的安全评价研究. 工程机械与维修. 2025(01): 55-57 .
    6. 喻卫华,马春景. 某超高层建筑深基坑设计与施工技术. 特种结构. 2025(01): 114-118+125 .
    7. 张普. 装配式高层建筑基坑开挖与联合支护施工技术. 中国建筑金属结构. 2025(04): 70-72 .
    8. 周振,杜策,张振. 复杂环境深基坑中数字化微扰动搅拌桩的应用研究. 地基处理. 2025(01): 76-82 .
    9. 胡天亮. 基坑降水方案设计及地下水位变化规律研究. 江西建材. 2024(02): 206-208 .
    10. 林生凉. “两墙合一”地下连续墙在深部高承压水地区超深基坑工程中的应用研究. 福建建筑. 2024(06): 71-75 .
    11. 韩爱民. 软土地区紧邻地铁深基坑施工变形控制研究. 建筑施工. 2024(07): 1072-1075 .
    12. 张凯,顾宏. 邻近深基坑某老旧建筑基础加固综合治理. 中国水运(下半月). 2024(08): 137-139 .
    13. 蔡子勇. 坑底加固对深厚软土狭长基坑变形影响研究. 现代城市轨道交通. 2024(08): 75-83 .
    14. 李昭,陈勇. 软土地区现浇桩基坑监测管理分析. 四川建材. 2024(08): 86-87+103 .
    15. 陈文华,张玉山,刘际付,曾维楚. 深基坑混凝土支撑轴力监测与分析. 地基处理. 2024(04): 404-412+420 .
    16. 张恒瑞. 紧邻既有建筑物含流砂层深基坑管井降水施工技术研究. 江西建材. 2024(06): 337-340 .
    17. 赵攀. 大跨劲性骨架钢筋混凝土拱桥深基坑开挖稳定性分析. 智能城市. 2024(08): 111-113 .
    18. 何林南. 软土地区某复杂边界条件深大基坑支护设计与分析. 建筑施工. 2024(10): 1687-1692 .
    19. 唐浩然,胡垚,雷华阳,路军富,刘婷,王凯. 基于深度学习的基坑开挖引起地表位移时序预测. 岩土工程学报. 2024(S2): 236-241 . 本站查看
    20. 王伟,邓松峰. 深厚软土区邻近地铁深基坑工程关键技术研究. 江苏建筑. 2024(05): 120-126 .
    21. 张凯,顾宏. 邻近深基坑某老旧建筑基础加固综合治理. 中国水运. 2024(16): 137-139 .
    22. 涂仁盼. 铁路枢纽深基坑混凝土支撑伺服系统应用研究. 铁道建筑技术. 2024(12): 14-18 .
    23. 李迎春,钮玉萍. 地铁超深基坑变形控制成套技术. 江苏建筑. 2024(06): 104-107 .
    24. 余希明. 桥梁基坑施工顺序对挡土墙安全受力特性的影响. 交通世界. 2024(36): 162-164 .
    25. 刘力英,欧振锋,杨春山,段尚磊. 沉管基槽开挖诱发临岸结构变形数值模拟与实测分析. 隧道与地下工程灾害防治. 2024(04): 12-19 .
    26. 孟旭,陈东霞,陈波,袁博. 滨海悬挂式止水帷幕深基坑非稳定渗流模型. 水资源与水工程学报. 2024(06): 149-156 .

    Other cited types(6)

Catalog

    Article views (1465) PDF downloads (721) Cited by(32)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return