• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
FANG Jincheng, FENG Shijin, ZHAO Yong. Investigations on thermomechanical behavior of energy piles considering bearing stratum effects at pile end[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(10): 2069-2077. DOI: 10.11779/CJGE20230710
Citation: FANG Jincheng, FENG Shijin, ZHAO Yong. Investigations on thermomechanical behavior of energy piles considering bearing stratum effects at pile end[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(10): 2069-2077. DOI: 10.11779/CJGE20230710

Investigations on thermomechanical behavior of energy piles considering bearing stratum effects at pile end

More Information
  • Received Date: July 24, 2023
  • Available Online: April 17, 2024
  • As a new type of energy-saving technology, the energy piles have received increasing attention due to their dual functions of load bearing and heat transferring. The application of thermal loads poses new challenges for the design and serviceability performance of the energy piles. However, in the existing theoretical studies, the stress-deformation characteristics of the energy piles subjected to the combined thermomechanical loading under different bearing conditions have not been fully revealed. In this study, an analytical model for the energy piles under different bearing conditions is established based on the framework of the elastic analysis theory, taking into account the effects of the end-bearing layer. The model is validated against the field test data. This study focuses on analyzing the effects of geotechnical conditions and geometrical parameters of the piles on the load transfer and displacement behavior of the energy piles. The results show that the thermally induced axial loads increase with the stiffness of the bearing layer. Compared to the floating-bearing piles, temperature variations will cause greater thermal stress in the piles bearing on stiff soil strata. The stiffnesses of the end-bearing layer, surrounding soil and pile head are the critical factors affecting the magnitude and distribution of the thermally induced stress and displacement. The normalized calculated results obtained from the analytical model can be used to estimate the thermally induced stress and displacement of the energy piles in practice and provide a reference for the design and calculation of the energy piles under different bearing conditions.
  • [1]
    刘汉龙, 孔纲强, 吴宏伟. 能量桩工程应用研究进展及PCC能量桩技术开发[J]. 岩土工程学报, 2014, 36(1): 176-181.

    LIU Hanlong, KONG Gangqiang, WU Hongwei. Applications of energy piles and technical development of PCC energy piles[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(1): 176-181. (in Chinese)
    [2]
    B BRANDL H. Deep Foundations on Bored and Auger Piles: Energy Piles and Diaphragm Walls for Heat Transfer from and into the Ground[M]. London: CRC Press, 1998.
    [3]
    AMATYA B L, SOGA K, BOURNE-WEBB P J, et al. Thermo-mechanical behaviour of energy piles[J]. Géotechnique, 2012, 62(6): 503-519. doi: 10.1680/geot.10.P.116
    [4]
    方金城, 孔纲强, 孟永东, 等. 低承台2×2能量桩基础单桩运行热力耦合特性研究[J]. 岩土工程学报, 2020, 42(2): 317-324.

    FANG Jincheng, KONG Gangqiang, MENG Yongdong, et al. Thermo-mechanical coupling characteristics of single energy pile operation in 2×2 pile-cap foundation[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 317-324. (in Chinese)
    [5]
    FANG J, KONG G, YANG Q. Group performance of energy piles under cyclic and variable thermal loading[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2022, 148(8): 04022060. doi: 10.1061/(ASCE)GT.1943-5606.0002840
    [6]
    GASHTI E H N, MALASKA M, KUJALA K. Analysis of thermo-active pile structures and their performance under groundwater flow conditions[J]. Energy and Buildings, 2015, 105: 1-8. doi: 10.1016/j.enbuild.2015.07.026
    [7]
    KONG G, FANG J, LV Z, et al. Effects of pile and soil properties on thermally induced mechanical responses of energy piles[J]. Computers and Geotechnics, 2023, 154: 105176. doi: 10.1016/j.compgeo.2022.105176
    [8]
    MORADSHAHI A, FAIZAL M, BOUAZZA A, et al. Effect of nearby piles and soil properties on thermal behaviour of a field-scale energy pile [J]. Canadian Geotechnical Journal, 2021, 58(9): 1351-1364. doi: 10.1139/cgj-2020-0353
    [9]
    KNELLWOLF C, PERON H, LALOUI L. Geotechnical analysis of heat exchanger piles[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2011, 137(10): 890-902. doi: 10.1061/(ASCE)GT.1943-5606.0000513
    [10]
    PASTEN C, SANTAMARINA J C. Thermally induced long- term displacement of thermoactive piles[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(5): 06014003. doi: 10.1061/(ASCE)GT.1943-5606.0001092
    [11]
    CHEN D, MCCARTNEY J S. Parameters for load transfer analysis of energy piles in uniform nonplastic soils[J]. International Journal of Geomechanics, 2017, 17(7): 04016159. doi: 10.1061/(ASCE)GM.1943-5622.0000873
    [12]
    费康, 戴迪, 洪伟. 能量桩单桩工作特性简化分析方法[J]. 岩土力学, 2019, 40(1): 70-80, 90.

    FEI Kang, DAI Di, HONG Wei. A simplified method for working performance analysis of single energy piles[J]. Rock and Soil Mechanics, 2019, 40(1): 70-80, 90. (in Chinese)
    [13]
    徐新丽, 蒋刚, 路宏伟, 等. 能源桩热-力半耦合弹性理论分析方法[J]. 南京工业大学学报(自然科学版), 2019, 41(1): 121-128. doi: 10.3969/j.issn.1671-7627.2019.01.018

    XU Xinli, JIANG Gang, LU Hongwei, et al. Elasticity theory of energy pile under thermal-mechanical semi-coupling[J]. Journal of Nanjing Tech University (Natural Science Edition), 2019, 41(1): 121-128. (in Chinese) doi: 10.3969/j.issn.1671-7627.2019.01.018
    [14]
    ROTTA LORIA A F, VADROT A, LALOUI L. Analysis of the vertical displacement of energy pile groups[J]. Geomechanics for Energy and the Environment, 2018, 16: 1-14. doi: 10.1016/j.gete.2018.04.001
    [15]
    MATTES N S. The influence of radial displacement compatibility on pile settlement[J]. Géotechnique, 1969, 19(2): 157-159.
    [16]
    BATINI N, ROTTA LORIA A F, CONTI P, et al. Energy and geotechnical behaviour of energy piles for different design solutions[J]. Applied Thermal Engineering, 2015, 86: 199-213. doi: 10.1016/j.applthermaleng.2015.04.050
    [17]
    POULOS H G, MATTES N S. The behaviour of axially loaded end-bearing piles[J]. Géotechnique, 1969, 19(2): 285-300. doi: 10.1680/geot.1969.19.2.285
    [18]
    MATTES N S, POULOS H. G. The analysis of downdrag in end-bearing piles[C]// 7th International Conference on Soil Mechanics and Foundation Engineering, Mexico, 1969: 204-209.
    [19]
    MINDLIN R D. Force at a point in the interior of a semi-infinite solid[J]. Journal of Applied Physics, 1936, 7(5): 195-202.
    [20]
    POULOS H G, DAVIS E H. Pile Foundation Analysis and Design: Settlement Analysis of Single Piles[M]. New York: Wiley, 1980.
    [21]
    D'APPOLONIA E, ROMUALDI J P. Load transfer in end-bearing steel H-piles[J]. Journal of the Soil Mechanics and Foundations Division, 1963, 89(2): 1-25. doi: 10.1061/JSFEAQ.0000496
    [22]
    LALOUI L, NUTH M, VULLIET L. Experimental and numerical investigations of the behaviour of a heat exchanger pile[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2006, 30(8): 763-781. doi: 10.1002/nag.499
    [23]
    桩基地热能利用技术标准: JGJ/T 438—2018[S]. 北京: 中国建筑工业出版社, 2018.

    Technical Standard for Utilization of Geothermal Energy Through Piles: JGJ/T 438—2018[S]. Beijing: China Architecture & Building Press, 2018. (in Chinese)

Catalog

    Article views (477) PDF downloads (118) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return