Citation: | LIU Songyu, LAI Fengwen, CAI Guojun, LI Hongjiang, LU Taishan, ZHANG Chaozhe. A CPTU-based earth pressure model for deep excavations under complex environment and its practical application[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(8): 1563-1572. DOI: 10.11779/CJGE20230649 |
[1] |
SCHWEIGER H F, TSCHUCHNIGG F. A numerical study on undrained passive earth pressure[J]. Computers and Geotechnics, 2021, 140: 104441. doi: 10.1016/j.compgeo.2021.104441
|
[2] |
赖丰文, 刘松玉, 杨大禹, 等. 有限宽度填土挡墙主动土压力的普适解法[J]. 岩土工程学报, 2022, 44(3): 483-491. doi: 10.11779/CJGE202203010
LAI Fengwen, LIU Songyu, YANG Dayu, et al. Generalized solution to active earth pressure exerted onto retaining wall with narrow backfills[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(3): 483-491. (in Chinese) doi: 10.11779/CJGE202203010
|
[3] |
FANG Y S, CHEN T J, WU B F. Passive earth pressures with various wall movements[J]. Journal of Geotechnical Engineering, 1994, 120(8): 1307-1323. doi: 10.1061/(ASCE)0733-9410(1994)120:8(1307)
|
[4] |
FANG Y S, ISHIBASHI I. Static earth pressures with various wall movements[J]. Journal of Geotechnical Engineering, 1986, 112(3): 317-333. doi: 10.1061/(ASCE)0733-9410(1986)112:3(317)
|
[5] |
DENG C, HAIGH S K. Earth pressures mobilised in dry sand with active rigid retaining wall movement[J]. Géotechnique Letters, 2021, 11(3): 202-208. doi: 10.1680/jgele.20.00116
|
[6] |
DENG C, HAIGH S K. Sand deformation mechanisms and earth pressures mobilised with passive rigid retaining wall movements[J]. Géotechnique, 2022: 1-14.
|
[7] |
FAN X, XU C, LIANG L, et al. Analytical solution for displacement-dependent passive earth pressure on rigid walls with various wall movements in cohesionless soil[J]. Computers and Geotechnics, 2021, 140: 104470. doi: 10.1016/j.compgeo.2021.104470
|
[8] |
WANG L, XIAO S. Calculation method for displacement- dependent earth pressure on a rigid wall rotating around its base[J]. International Journal of Geomechanics, 2021, 21(8): 04021132. doi: 10.1061/(ASCE)GM.1943-5622.0002104
|
[9] |
NEJJAR K, DIAS D, CUIRA F, et al. Numerical modelling of a 32 m deep excavation in the suburbs of Paris[J]. Engineering Structures, 2022, 268: 114727. doi: 10.1016/j.engstruct.2022.114727
|
[10] |
NEJJAR K, DIAS D, CUIRA F, et al. Experimental study of the performance of a 32 m deep excavation in the suburbs of Paris[J]. Géotechnique, 2021: 1-11.
|
[11] |
MEI G, CHEN Q, SONG L. Model for predicting displacement-dependent lateral earth pressure[J]. Canadian Geotechnical Journal, 2009, 46(8): 969-975. doi: 10.1139/T09-040
|
[12] |
MEI G, CHEN R, LIU J. New insight into developing mathematical models for predicting deformation-dependent lateral earth pressure[J]. International Journal of Geomechanics, 2017, 17(8): 06017003. doi: 10.1061/(ASCE)GM.1943-5622.0000902
|
[13] |
NI P, MANGALATHU S, SONG L, et al. Displacement- dependent lateral earth pressure models[J]. Journal of Engineering Mechanics, 2018, 144(6): 04018032. doi: 10.1061/(ASCE)EM.1943-7889.0001451
|
[14] |
NI P, MEI G, ZHAO Y. Displacement-dependent earth pressures on rigid retaining walls with compressible geofoam inclusions: physical modeling and analytical solutions[J]. International Journal of Geomechanics, 2017, 17(6): 04016132. doi: 10.1061/(ASCE)GM.1943-5622.0000838
|
[15] |
NI P, SONG L, MEI G, et al. On predicting displacement- dependent earth pressure for laterally loaded piles[J]. Soils and Foundations, 2018, 58(1): 85-96. doi: 10.1016/j.sandf.2017.11.007
|
[16] |
POTTS D, FOURIE A. A numerical study of the effects of wall deformation on earth pressures[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1986, 10(4): 383-405. doi: 10.1002/nag.1610100404
|
[17] |
British Code BA42/96 The Design of Integral Bridges[S]. London: Highways Agency, 1996.
|
[18] |
DUNCAN J M, MOKWA R L. Passive earth pressures: theories and tests[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(3): 248-257. doi: 10.1061/(ASCE)1090-0241(2001)127:3(248)
|
[19] |
Transportation Officials, Subcommittee on Bridges. AASHTO Guide Specifications for LRFD Seismic Bridge Design[S]. AASHTO, 2011.
|
[20] |
刘松玉, 吴燕开. 论我国静力触探技术(CPT) 现状与发展[J]. 岩土工程学报, 2004, 26(4): 553-556. http://cge.nhri.cn/cn/article/id/11468
LIU Songyu, WU Yankai. On the state-of-art and development of CPT in China[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(4): 553-556. (in Chinese) http://cge.nhri.cn/cn/article/id/11468
|
[21] |
蔡国军, 刘松玉, 童立元, 等. 现代数字式多功能CPTU与中国CPT对比试验研究[J]. 岩石力学与工程学报, 2009, 28(5): 914-928. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200905011.htm
CAI Guojun, LIU Songyu, TONG Liyuan, et al. Comparative study of modern digital multifunctional CPTU and China's CPT tests[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(5): 914-928. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200905011.htm
|
[22] |
MAYNE P W, COOP M R, SPRINGMAN S M, et al. Geomaterial behavior and testing[C]// Proceedings of the 17th International Conference on Soil Mechanics and Geotechnical Engineering. IOS Press, 2009: 2777-2872.
|
[23] |
LI H, LIU S, TONG L. Evaluation of lateral response of single piles to adjacent excavation using data from cone penetration tests[J]. Canadian Geotechnical Journal, 2019, 56(2): 236-248.
|
[24] |
李赞, 刘松玉, 吴恺, 等. 基于多功能CPTU测试的基坑开挖扰动深度确定方法[J]. 岩土工程学报, 2021, 43(1): 181-187. doi: 10.11779/CJGE202101021
LI Zan, LIU Songyu, WU Kai, et al. Determination of the disturbance depth due to excavations using multifunctional CPTU tests[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(1): 181-187. (in Chinese) doi: 10.11779/CJGE202101021
|
[25] |
LU T, LIU S, CAI G, et al. Effect of excavation disturbance on clayey soil mechanical properties and pile capacity[J]. International Journal of Geomechanics, 2022, 22(7): 05022003.
|
[26] |
LAI F, ZHANG N, LIU S, et al. A generalised analytical framework for active earth pressure on retaining walls with narrow soil[J]. Géotechnique, 2022: 1-16.
|
[27] |
LI C, LAI F, SHIAU J, et al. Passive earth pressure in narrow cohesive-frictional backfills[J]. International Journal of Geomechanics, 2023, 23(1): 04022262.
|
[28] |
CLOUGH G, DUNCAN J. Foundation Engineering Handbook[M]. New York: Springer, 1991.
|
[29] |
MAYNE P. Evaluating effective stress parameters and undrained shear strengths of soft-firm clays from CPT and DMT[J]. Australian Geomechanics Journal, 2016, 51(4): 27-55.
|
[30] |
OUYANG Z, MAYNE P W. Modified NTH method for assessing effective friction angle of normally consolidated and overconsolidated clays from piezocone tests[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(10): 04019067.
|
[31] |
MAYNE P W. Integrated Ground Behavior: In-Situ and Labtests[M]// London: Taylor & Francis, 2005.
|
[32] |
AGAIBY S S, MAYNE P W. CPT evaluation of yield stress profiles in soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(12): 04019104.
|
[33] |
POTYONDY J G. Skin friction between various soils and construction materials[J]. Géotechnique, 1961, 11(4): 339-353.
|
[34] |
LUNNE T, BERRE T, ANDERSEN K H, et al. Effects of sample disturbance and consolidation procedures on measured shear strength of soft marine Norwegian clays[J]. Canadian Geotechnical Journal, 2006, 43(7): 726-750.
|
[35] |
BLAKER Ø, DEGROOT D J. Intact, disturbed, and reconstituted undrained shear behavior of low-plasticity natural silt[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(8): 04020062.
|
[36] |
杨光华. 土力学发展的四个阶段的思考[J]. 岩土工程学报, 2022, 44(9): 1730-1732. doi: 10.11779/CJGE202209018
YANG Guanghua. Thingking of four stages of development of soil mechanics [J]. Chinese Journal of Geotechnical Engineering, 2022, 44(9): 1730-1732. (in Chinese) doi: 10.11779/CJGE202209018
|