• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LUO Weiping, LEE Fook Hou, YUAN Dajun, ZHU Hehua. Similarity analysis and verification of slurry fracturing on shield tunnel face using centrifuge modeling[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(9): 1919-1927. DOI: 10.11779/CJGE20230401
Citation: LUO Weiping, LEE Fook Hou, YUAN Dajun, ZHU Hehua. Similarity analysis and verification of slurry fracturing on shield tunnel face using centrifuge modeling[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(9): 1919-1927. DOI: 10.11779/CJGE20230401

Similarity analysis and verification of slurry fracturing on shield tunnel face using centrifuge modeling

More Information
  • Received Date: May 07, 2023
  • Available Online: March 24, 2024
  • The geotechnical centrifuge test can restore the real stress field in the small-scale model, and provides an effective research method for investigating the slurry fracturing phenomenon of the shield tunnel face. There are several factors involved in the shield slurry fracturing, including the interaction between soil, slurry and tunnel, especially the existence of various fluids makes the dimensional analysis, test parameter scaling and data interpretation more complicated in the model tests. How to determine a reasonable similarity ratio is the key prerequisite for the success of the centrifuge modelling. On the basis of elucidating the basic physical process of slurry fracturing of shield tunnel face, a model test similarity analysis method based on dimensionless numbers is proposed. The similarity test design system of "tunnel-soil-slurry" based on the Butterfield dimensional analysis method is established to apply to geotechnical centrifuges for simulating the shield slurry fracturing. This system guarantees the similarity between the model system and the prototype system in terms of size, material, dimensionless number, time, etc., so that the real physical process of shield slurry fracturing can be accurately restored. Finally, the proposed similarity criterion is further verified by carrying out the slurry fracturing centrifuge modelling of the shield excavation face. The research results are of certain reference significance for the similarity analysis of the physical simulation of slurry fracturing.
  • [1]
    袁大军, 沈翔, 刘学彦, 等. 泥水盾构开挖面稳定性研究[J]. 中国公路学报, 2017, 30(8): 24-37. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201708003.htm

    YUAN Dajun, SHEN Xiang, LIU Xueyan, et al. Research on excavation face stability of slurry shield tunneling[J]. China Journal of Highway and Transport, 2017, 30(8): 24-37. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201708003.htm
    [2]
    BEZUIJEN A, BRASSINGA H E. Blow-out pressures measured in a centrifuge model and in the field[J]. Tunnelling A Decade of Progress GeoDelft 1995-2005, 2005: 143-150.
    [3]
    LUO W, YUAN D, JIN D, et al. Optimal control of slurry pressure during shield tunnelling based on random forest and particle swarm optimization[J]. Computer Modeling in Engineering \ & Sciences, 2021, 128(1): 109-135.
    [4]
    YUAN D J, LUO W P, JIN D L, et al. Hydraulic fracturing pressure of concentric double-layered cylinder in cohesive soil[J]. Frontiers of Structural and Civil Engineering, 2021, 15(4): 937-947. doi: 10.1007/s11709-021-0754-4
    [5]
    JIN D, NG Y C H, HAN B, et al. Modeling hydraulic fracturing and blow-out failure of tunnel face during shield tunneling in soft soils[J]. Int J Geomech, 2022, 22(3): 06021041. doi: 10.1061/(ASCE)GM.1943-5622.0002279
    [6]
    GOODINGS D. Relationships for centrifugal modelling of seepage and surface flow effects on embankment dams[J]. Géotechnique, 1982, 32(2): 149-152. doi: 10.1680/geot.1982.32.2.149
    [7]
    CARGILL K W, KO H Y. Centrifugal modeling of transient water flow[J]. Journal of Geotechnical Engineering, 1983, 109(4): 536-555. doi: 10.1061/(ASCE)0733-9410(1983)109:4(536)
    [8]
    DE PATER C, CLEARY M, QUINN T, et al. Experimental verification of dimensional analysis for hydraulic fracturing [J]. SPE Prod Facil, 1994, 9(4): 230-238. doi: 10.2118/24994-PA
    [9]
    朱维新. 用离心模型研究土石坝心墙裂缝[J]. 岩土工程学报, 1994, 16(6): 82-95. http://cge.nhri.cn/article/id/9821

    ZHU Weixin. Research on cracks of earth-rock dam core wall using centrifugal modeling[J]. Chinese Journal of Geotechnical Engineering, 1994, 16(6): 82-95. (in Chinese) http://cge.nhri.cn/article/id/9821
    [10]
    BUNGER A P, JEFFREY R G, DETOURNAY E. Application of scaling laws to laboratory-scale hydraulic fractures[C]// ARMA US Rock Mechanics/Geomechanics Symposium. ARMA, 2005.
    [11]
    CULLIGAN P J, BARRY D A. Similitude requirements for modelling napl movement with a geotechnical centrifuge[J]. Proceedings of the Institution of Civil Engineers Geotechnical Engineering, 1998, 131(3): 180-186. doi: 10.1680/igeng.1998.30474
    [12]
    HENSLEY P J, SCHOFIELD A N. Accelerated physical modelling of hazardous-waste transport[J]. Géotechnique, 1991, 41(3): 447-466. doi: 10.1680/geot.1991.41.3.447
    [13]
    宋东日, 周公旦, CHOI C E, 等. 土工离心机模拟泥石流问题的相似性考虑[J]. 岩土工程学报, 2019, 41(12): 2262-2271. doi: 10.11779/CJGE201912011

    SONG Dongri, ZHOU Gongdan, CHOI C E, et al. Scaling principles of debris flow modeling using geotechnical centrifuge[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2262-2271. (in Chinese) doi: 10.11779/CJGE201912011
    [14]
    ANTONIOU M, NIKITAS N, ANASTASOPOULOS I, et al. Scaling laws for shaking table testing of reinforced concrete tunnels accounting for post-cracking lining response[J]. Tunnelling and Underground Space Technology, 2020, 101: 103353. doi: 10.1016/j.tust.2020.103353
    [15]
    LEE F H, LEE C H, DASARI G R. Centrifuge modelling of wet deep mixing processes in soft clays[J]. Géotechnique, 2006, 56(10): 677-691. doi: 10.1680/geot.2006.56.10.677
    [16]
    BAZANT Z P, RAJAPAKSE Y. Fracture Scaling[M]. Springer Science & Business Media, 2012.
    [17]
    王滕, 袁大军, 金大龙, 等. 泥水盾构中劈裂压力影响因素研究[J]. 土木工程学报, 2020, 53(增刊1): 31-36.

    WANG Teng, YUAN Dajun, JIN Dalong et al, Influence factors of fracturing pressure during slurry shield tunnelling[J]. China Civil Engineering Journal, 2020, 53(S1): 31-36. (in Chinese)
    [18]
    ANDERSEN K H, RAWLINGS C G, LUNNE T A, et al. Estimation of hydraulic fracture pressure in clay[J]. Can Geotech J, 1994, 31(6): 817-828. doi: 10.1139/t94-099
    [19]
    ALFARO M C, WONG R C K. Laboratory studies on fracturing of low-permeability soils[J]. Can Geotech J, 2001, 38(2): 303-315. doi: 10.1139/t00-096
    [20]
    FINNEMORE E J F J B. Fluid Mechanics with Engineering Applications[M]. 10th ed. New York: McGraw-Hill Companies Inc, 2002.
    [21]
    FINNIE I, RANDOLPH M. Punch-through and liquefaction induced failure of shallow foundations on calcareous sediments; proceedings of the Punch-through and liquefaction induced failure of shallow foundations on calcareous sediments, F, 1994[C]// Punch-Through and Liquefaction Induced Failure of Shallow Foundations on Calcareous Sediments, Pergamon, 1994: 217-230.
    [22]
    BUCKINGHAM E. On physically similar systems; illustrations of the use of dimensional equations[J]. Physical Review, 1914, 4(4): 345-376. doi: 10.1103/PhysRev.4.345
    [23]
    BUTTERFIELD R. Dimensional analysis for geotechnical engineers[J]. Géotechnique, 1999, 49(3): 357-66. doi: 10.1680/geot.1999.49.3.357
    [24]
    BUTTERFIELD R. Scale-modelling of fluid flow in geotechnical centrifuges[J]. Soils and Foundations, 2000, 40(6): 39-45. doi: 10.3208/sandf.40.6_39
    [25]
    BARRY D, LISLE I, LI L, et al. Similitude applied to centrifugal scaling of unsaturated flow[J]. Water Resour Res, 2001, 37(10): 2471-2479. doi: 10.1029/2000WR000049
    [26]
    JONES B R, BROUWERS L B, VAN TONDER W D, et al. Assessing geotechnical centrifuge modelling in addressing variably saturated flow in soil and fractured rock[J]. Environmental Science and Pollution Research, 2017, 24(15): 13203-13223. doi: 10.1007/s11356-016-8333-2
    [27]
    袁大军, 黄清飞, 李兴高, 等. 盾构掘进黏土地层泥水劈裂伸展现象研究[J]. 岩土工程学报, 2010, 32(5): 712-717. http://cge.nhri.cn/article/id/13401

    YUAN Dajun, HUANG Qingfei, LI Xinggao, et al. Hydraulic fracture extending during slurry shield tunneling in cohesive soil[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(5): 712-717. (in Chinese) http://cge.nhri.cn/article/id/13401
  • Related Articles

    [1]LÜ Xi-lin, ZENG Sheng, WANG Yuan-peng, MA Shao-kun, HUANG Mao-song. Physical model tests on stability of shield tunnel face in saturated gravel stratum[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 129-132. DOI: 10.11779/CJGE2019S2033
    [2]JIN Da-long, YUAN Da-jun, ZHENG Hao-tian, LI Xing-gao, DING Fei. Centrifugal model tests on face stability of slurry shield tunnels under high water pressures[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1653-1660. DOI: 10.11779/CJGE201909009
    [3]LI Wei-ping, LI Xing, XUE Ya-dong, ZHANG Sen, GE Jia-cheng. Model tests on face stability of shallow shield tunnels in sandy cobble strata[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S2): 199-203. DOI: 10.11779/CJGE2018S2040
    [4]XU Qian-wei, TANG Zhuo-hua, ZHU He-hua, WANG Gguo-fu, LU Lin-hai. Limit support pressure at excavation face of shield tunnels[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(7): 1234-1240. DOI: 10.11779/CJGE201707009
    [5]CHEN Meng-qiao, LIU Jian-kun, XIAO Jun-hua, TIAN Ze-ye. Face supporting pressure of slurry shield tunnel under high hydraulic pressure[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 163-169.
    [6]Lü Xi-lin, LI Feng-di, HUANG Mao-song, JIAO Qi-zhu, HU Wen-ting. 3D limit support pressure solution for shield tunnel face subjected to seepage[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk1): 108-112.
    [7]TANG Lü-jun, CHEN Ren-peng, YIN Xin-sheng, KONG Ling-gang, HUANG Bo, CHEN Yun-min. Centrifugal model tests on face stability of shield tunnels in dense sand[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(10): 1830-1838.
    [8]WANG Hao-ran, HUANG Mao-song, Lü Xi-lin, ZHOU Wei-xiang. Upper-bound limit analysis of stability of shield tunnel face considering seepage[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(9): 1696-1704.
    [9]Large-scale tests on face stability of shield tunnelling in dry cohesionless soil[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(1).
    [10]ZHU Wei, QIN Jianshe, LU Tinghao. Numerical study on face movement and collapse around shield tunnels in sand[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(8): 897-902.

Catalog

    Article views (273) PDF downloads (48) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return