• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Yijiang, YU Dongxu, SUN Lipeng, ZHU Qiyin, WANG Jianzhou. Thermal-breaking characteristics and crack distribution of rock irradiated by laser beams[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(9): 1809-1819. DOI: 10.11779/CJGE20230396
Citation: WANG Yijiang, YU Dongxu, SUN Lipeng, ZHU Qiyin, WANG Jianzhou. Thermal-breaking characteristics and crack distribution of rock irradiated by laser beams[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(9): 1809-1819. DOI: 10.11779/CJGE20230396

Thermal-breaking characteristics and crack distribution of rock irradiated by laser beams

More Information
  • Received Date: May 07, 2023
  • Available Online: March 24, 2024
  • The laser-assisted rock breaking is a non-contact technology employed for the rock fragmentation, with its efficiency contingent upon the laser power, irradiation time and defocusing distance. To explore the effects of various irradiation parameters, the rock-breaking tests are conducted on three distinct rock types, including limestone, sandstone and granite. The temperature field, perforation parameters, specific energy, thermal-cracking energy, crack distribution, mineral composition and microstructural characteristics are studied. The results demonstrate that the rock surface temperature subjected to laser irradiation experiences a substantial increase, with the maximum temperature and temperature gradient of 2000 oC and 1500 oC/mm, respectively. The granite sample exhibits the highest surface temperature and temperature gradient, followed by sandstone, and the limestone displays the lowest values. The perforation diameter, depth and speed of rocks are closely associated with the corresponding irradiation parameters. The sandstone, limestone and granite exhibit the maximum perforation speeds of 3.18 mm/s, 2.68 mm/s and 0.8 mm/s, respectively. The relationship between specific energy and irradiation parameters mirrors that of thermal-cracking energy under the same irradiation parameters. However, the specific energy values are approximately 1-2 orders of magnitude higher than the corresponding thermal-cracking energy values. The specific energy ranking for the three rock types is as follows: granite > sandstone > limestone. The rock samples exhibit a notable presence of radial cracks that extend to the edges. The limestone and granite samples display extensive development of the secondary cracks, whereas the sandstone shows no significant presence of the secondary cracks. The irradiated rock samples demonstrat evident alterations in both diffraction intensity and microstructures when compared with their corresponding original samples.
  • [1]
    刘晓丽, 孙欢, 董勤喜, 等. 深埋引水隧洞极硬岩TBM掘进及辅助破岩技术[J]. 清华大学学报(自然科学版), 2022, 62(8): 1292-1301. https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB202208005.htm

    LIU Xiaoli, SUN Huan, DONG Qinxi, et al. Extremely hard rock mass excavation using rock breakdown methods to assist TBM in a deep, long diversion tunnel in the Qinling Mountains[J]. Journal of Tsinghua University (Science and Technology), 2022, 62(8): 1292-1301. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB202208005.htm
    [2]
    WANG Y J, SHI Y L, JIANG J Y, et al. Experimental study on modified specific energy, temperature field and mechanical properties of Xuzhou limestone irradiated by fiber laser[J]. Heat and Mass Transfer, 2020, 56(1): 161-173. doi: 10.1007/s00231-019-02682-2
    [3]
    卢高明, 李元辉, FERRI Hassani, 等. 微波辅助机械破岩试验和理论研究进展[J]. 岩土工程学报, 2016, 38(8): 1497-1506. doi: 10.11779/CJGE201608018

    LU Gaoming, LI Yuanhui, FERRI HASSANI, et al. Review of theoretical and experimental studies on mechanical rock fragmentationusing microwave-assisted approach[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(8): 1497-1506. (in Chinese) doi: 10.11779/CJGE201608018
    [4]
    LI X, WANG S, XIA K, et al. Dynamic tensile response of a microwave damaged granitic rock[J]. Experimental Mechanics, 2021, 61(3): 461-468. doi: 10.1007/s11340-020-00677-3
    [5]
    WANG Y J, JIANG J Y, DARKWA J, et al. Experimental study of thermal fracturing of Hot Dry Rock irradiated by moving laser beam: temperature, efficiency and porosity[J]. Renewable Energy, 2020, 160: 803-816. doi: 10.1016/j.renene.2020.06.138
    [6]
    周新超, 马小晶, 廖翔云, 等. 磨料水射流冲击孔隙岩体的SPH模拟研究[J]. 岩土工程学报, 2022, 44(4): 731-739. doi: 10.11779/CJGE202204016

    ZHOU Xinchao, MA Xiaojing, LIAO Xiangyun, et al. Numerical simulation of abrasive water jet impacting porous rock based on SPH method[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(4): 731-739. (in Chinese) doi: 10.11779/CJGE202204016
    [7]
    官兵, 李士斌, 张立刚, 等. 激光破岩技术的研究现状及进展[J]. 中国光学, 2020, 13(2): 229-248. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGA202002004.htm

    GUAN Bing, LI Shibin, ZHANG Ligang, et al. Research progress on rock removal by laser technology[J]. Chinese Optics, 2020, 13(2): 229-248. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGA202002004.htm
    [8]
    KUANG L F, SUN L P, YU D X, et al. Experimental investigation on compressive strength, ultrasonic characteristic and cracks distribution of granite rock irradiated by a moving laser beam[J]. Applied Sciences, 2022, 12(20): 10681. doi: 10.3390/app122010681
    [9]
    RUI F X, ZHAO G F. Experimental and numerical investigation of laser-induced rock damage and the implications for laser-assisted rock cutting[J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 139: 104653. doi: 10.1016/j.ijrmms.2021.104653
    [10]
    YANG X F, ZHOU J H, ZHOU X, et al. Investigation on the rock temperature in fiber laser perforating[J]. Optik, 2020, 219: 165104. doi: 10.1016/j.ijleo.2020.165104
    [11]
    CHEN K, HUANG Z Q, DENG R, et al. Research on the temperature and stress fields of elliptical laser irradiated sandstone, and drilling with the elliptical laser-assisted mechanical bit[J]. Journal of Petroleum Science and Engineering, 2022, 211: 110147. doi: 10.1016/j.petrol.2022.110147
    [12]
    HU M X, BAI Y, CHEN H W, et al. Engineering characteristics of laser perforation with a high power fiber laser in oil and gas wells[J]. Infrared Physics & Technology, 2018, 92: 103-108.
    [13]
    LI M Y, HAN B, ZHANG Q, et al. Investigation on rock breaking for sandstone with high power density laser beam[J]. Optik, 2019, 180: 635-647. doi: 10.1016/j.ijleo.2018.10.059
    [14]
    LI M Y, HAN B, ZHANG S Y, et al. Investigation into laser perforation of rock for petroleum exploitation[J]. Lasers in Engineering, 2018, 41(1-3): 73-99.
    [15]
    GUO C G, SUN Y, YUE H T, et al. Experimental research on laser thermal rock breaking and optimization of the process parameters[J]. International Journal of Rock Mechanics and Mining Sciences, 2022, 160: 105251. doi: 10.1016/j.ijrmms.2022.105251
    [16]
    LYU Z H, SONG X Z, LI G S, et al. Investigations on thermal spallation drilling performance using the specific energy method[J]. Journal of Natural Gas Science and Engineering, 2018, 54: 216-223. doi: 10.1016/j.jngse.2018.04.009
    [17]
    王义江, 郁东旭, 王泽桂, 等. 激光照射花岗岩热裂规律及力学性质试验研究[J]. 中国矿业大学学报, 2023, 52(4): 701-712. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD202304006.htm

    WANG Yijiang, YU Dongxu, WANG Zegui, et al. Experimental research on thermal cracking and mechanical properties of granite irradiated by laser beam[J]. Journal of China University of Mining & Technology, 2023, 52(4): 701-712. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD202304006.htm
    [18]
    徐小丽, 高峰, 沈晓明, 等. 高温后花岗岩力学性质及微孔隙结构特征研究[J]. 岩土力学, 2010, 31(6): 1752-1758. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201006012.htm

    XU Xiaoli, GAO Feng, SHEN Xiaoming, et al. Research on mechanical characteristics and micropore structure of granite under high-temperature[J]. Rock and Soil Mechanics, 2010, 31(6): 1752-1758. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201006012.htm
    [19]
    孙强, 张志镇, 薛雷, 等. 岩石高温相变与物理力学性质变化[J]. 岩石力学与工程学报, 2013, 32(5): 935-942. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201305011.htm

    SUN Qiang, ZHANG Zhizhen, XUE Lei, et al. Physico-mechanical properties variation of rock with phase transformation under high temperature[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(5): 935-942. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201305011.htm
    [20]
    LI M Y, HAN B, ZHANG S Y, et al. Numerical simulation and experimental investigation on fracture mechanism of granite by laser irradiation[J]. Optics & Laser Technology, 2018, 106: 52-60.
    [21]
    YANG S Q, RANJITH P G, JING H W, et al. An experimental investigation on thermal damage and failure mechanical behavior of granite after exposure to different high temperature treatments[J]. Geothermics, 2017, 65: 180-197. doi: 10.1016/j.geothermics.2016.09.008
    [22]
    郭辰光, 孙瑜, 岳海涛, 等. 激光辐照热裂破岩规律及力学性能[J]. 煤炭学报, 2022, 47(4): 1734-1742. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202204030.htm

    GUO Chenguang, SUN Yu, YUE Haitao, et al. Law and mechanics of thermal cracking of rock by laser irradiation[J]. Journal of China Coal Society, 2022, 47(4): 1734-1742. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202204030.htm
    [23]
    SOUSA L, MENNINGEN J, LÓPEZ-DONCEL R, et al. Petrophysical properties of limestones: influence on behaviour under different environmental conditions and applications[J]. Environmental Earth Sciences, 2021, 80(24): 814. doi: 10.1007/s12665-021-10064-3
    [24]
    陈国庆, 李阳, 陈亚烽, 等. 不同岩性的裂隙岩石破裂热–声敏感性分析[J]. 岩石力学与工程学报, 2022, 41(10): 1945-1957. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202210001.htm

    CHEN Guoqing, LI Yang, CHEN Yafeng, et al. Thermal-acoustic sensitivity analysis of fractured rock with different lithologies[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(10): 1945-1957. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202210001.htm

Catalog

    Article views (440) PDF downloads (86) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return