• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
SONG Zhanping, CHENG Yun, YANG Tengtian, YANG Pengtao, PAN Hongwei. Experimental study on fatigue damage evolution mechanism of hard layered sandstone under cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(3): 490-499. DOI: 10.11779/CJGE20230267
Citation: SONG Zhanping, CHENG Yun, YANG Tengtian, YANG Pengtao, PAN Hongwei. Experimental study on fatigue damage evolution mechanism of hard layered sandstone under cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(3): 490-499. DOI: 10.11779/CJGE20230267

Experimental study on fatigue damage evolution mechanism of hard layered sandstone under cyclic loading

More Information
  • Received Date: March 27, 2023
  • Available Online: October 31, 2023
  • The deformation and cracking of tunnel basement surrounding rock under the disturbance of train dynamic load contain complex mechanical damage problems. The fatigue mechanics tests and electron microscope scanning tests are carried out to explore the evolution mechanism of fatigue damage of hard layered sandstone under cyclic loading. The results show that there is an aging correspondence between macroscopic cracks and dynamic stress-strain curves of layered sandstone. The more obvious the layer effects, the more frequent the stress drop and the more significant the hysteresis loop transition. The peak strength presents a trend of slow decay-fast decrease-sharp increase and the fatigue life is positively correlated with the peak strength. The elastic modulus presents a trend of sharp increase-slow increase-flattening or decrease, and the dividing points of the period ratio are 28.57% and 81.81%. The fracture mode is closely related to the layer effects, and it presents tensile fracture (Ⅰ and Ⅱ types), oblique shear fracture type and compound fracture type. The tensile fracture type Ⅱ has a compression rod effect and the roughness of fracture surface is slightly smaller. The roughness of the fracture surface of oblique shear fracture type decreases significantly, and compression-shear action leads to fracture zone and smooth fracture of the composite fracture section. The cyclic loading and unloading effects result in the evolution of critical damage of layer sandstone with an evolution trend of nonlinear rapid increase - approximate linear increase - nonlinear sharp increase. The logistic inverse function damage model can well describe the critical damage laws, and the order of fatigue sensitivity is oblique shear fracture type > compound fracture type > tensile fracture type (Ⅰ and Ⅱ).
  • [1]
    宋战平, 程昀, 杨腾添, 等. 渗透-应力耦合作用下灰岩压缩破坏及声发射特性分析[J]. 煤炭学报, 2019, 44(9): 2751-2759. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201909015.htm

    SONG Zhanping, CHENG Yun, YANG Tengtian, et al. Analysis of compression failure and acoustic emission characteristics of limestone under permeability-stress coupling[J]. Journal of China Coal Society, 2019, 44(9): 2751-2759. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201909015.htm
    [2]
    宋战平, 程昀, 杨腾添, 等. 渗透压作用对灰岩孔隙结构演化规律影响的试验研究[J]. 岩土力学, 2019, 40(12): 4607-4619, 4643. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201912007.htm

    SONG Zhanping, CHENG Yun, YANG Tengtian, et al. Experimental study of the influence of osmotic pressure on pore structure evolution in limestone[J]. Rock and Soil Mechanics, 2019, 40(12): 4607-4619, 4643. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201912007.htm
    [3]
    赵云阁, 黄麟淇, 李夕兵. 岩石损伤强度及峰值强度前后阶段的声发射识别[J]. 岩土工程学报, 2022, 44(10): 1908-1916. doi: 10.11779/CJGE202210017

    ZHAO Yunge, HUANG Linqi, LI Xibing. Identification of stages before and after damage strength and peak strength using acoustic emission tests[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(10): 1908-1916. (in Chinese) doi: 10.11779/CJGE202210017
    [4]
    ATTEWELL P B, SANDFORD M R. Intrinsic shear strength of a brittle, anisotropic rock—Ⅲ[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1974, 11(11): 439-451.
    [5]
    WASANTHA P L P, RANJITH P G, SHAO S S. Energy monitoring and analysis during deformation of bedded-sandstone: use of acoustic emission[J]. Ultrasonics, 2014, 54(1): 217-226. doi: 10.1016/j.ultras.2013.06.015
    [6]
    周辉, 宋明, 张传庆, 等. 水平层状复合岩体变形破坏特征的围压效应研究[J]. 岩土力学, 2019, 40(2): 465-473. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201902007.htm

    ZHOU Hui, SONG Ming, ZHANG Chuanqing, et al. Effect of confining pressure on mechanical properties of horizontal layered composite rock[J]. Rock and Soil Mechanics, 2019, 40(2): 465-473. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201902007.htm
    [7]
    李成杰, 徐颖, 冯明明, 等. 单轴荷载下类煤岩组合体变形规律及破坏机理[J]. 煤炭学报, 2020, 45(5): 1773-1782. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202005023.htm

    LI Chengjie, XU Ying, FENG Mingming, et al. Deformation law and failure mechanism of coal-rock-like combined body under uniaxial loading[J]. Journal of China Coal Society, 2020, 45(5): 1773-1782. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202005023.htm
    [8]
    王兵武, 李银平, 杨春和, 等. 界面倾角对复合层状物理模型材料力学特性的影响研究[J]. 岩土力学, 2015, 36(增刊2): 139-147. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2015S2019.htm

    WANG Bingwu, LI Yinping, YANG Chunhe, et al. Influences of interface inclination on mechanical properties of composite bedded physical model material[J]. Rock and Soil Mechanics, 2015, 36(S2): 139-147. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2015S2019.htm
    [9]
    TIEN Y M, KUO M C, JUANG C H. An experimental investigation of the failure mechanism of simulated transversely isotropic rocks[J]. International Journal of Rock Mechanics and Mining Sciences, 2006, 43(8): 1163-1181. doi: 10.1016/j.ijrmms.2006.03.011
    [10]
    TUTUNCU N. Intralaminar failure stresses due to centrifugal forces in polar-anisotropic circular plates[J]. Journal of Composite Materials, 1998, 32(21): 1948-1963. doi: 10.1177/002199839803202104
    [11]
    OKUR D V, ANSAL A. Stiffness degradation of natural fine grained soils during cyclic loading[J]. Soil Dynamics and Earthquake Engineering, 2007, 27(9): 843-854. doi: 10.1016/j.soildyn.2007.01.005
    [12]
    周家文, 杨兴国, 符文熹, 等. 脆性岩石单轴循环加卸载试验及断裂损伤力学特性研究[J]. 岩石力学与工程学报, 2010, 29(6): 1172-1183. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201006013.htm

    ZHOU Jiawen, YANG Xingguo, FU Wenxi, et al. Experimental test and fracture damage mechanical characteristics of brittle rock under uniaxial cyclic loading and unloading conditions[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(6): 1172-1183. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201006013.htm
    [13]
    尤明庆. 岩样单轴压缩的失稳破坏和试验机加载性能[J]. 岩土力学, 1998, 19(3): 43-49. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX199803007.htm

    YOU Mingqing. Instable failure of rock specimen in uniaxial compression and the loading behavior of testing machine[J]. Rock and Soil Mechanics, 1998, 19(3): 43-49. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX199803007.htm
    [14]
    DAMJANAC B, FAIRHURST C. Evidence for a long-term strength threshold in crystalline rock[J]. Rock Mechanics and Rock Engineering, 2010, 43(5): 513-531. doi: 10.1007/s00603-010-0090-9
    [15]
    梁昌玉, 李晓, 王声星, 等. 岩石单轴压缩应力-应变特征的率相关性及能量机制试验研究[J]. 岩石力学与工程学报, 2012, 31(9): 1830-1838. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201209011.htm

    LIANG Changyu, LI Xiao, WANG Shengxing, et al. Experimental investigations on rate-dependent stress-strain characteristics and energy mechanism of rock under uniaixal compression[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(9): 1830-1838. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201209011.htm
    [16]
    CHENG Y, SONG Z P, YANG T T, et al. Investigating the aging damage evolution characteristics of layered hard sandstone using digital image correlation[J]. Construction and Building Materials, 2022, 353: 128838-128856. doi: 10.1016/j.conbuildmat.2022.128838
    [17]
    衡帅, 杨春和, 张保平, 等. 页岩各向异性特征的试验研究[J]. 岩土力学, 2015, 36(3): 609-616. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201503001.htm

    HENG Shuai, YANG Chunhe, ZHANG Baoping, et al. Experimental research on anisotropic properties of shale[J]. Rock and Soil Mechanics, 2015, 36(3): 609-616. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201503001.htm
    [18]
    邓华锋, 李涛, 李建林, 等. 层状岩体各向异性声学和力学参数计算方法研究[J]. 岩石力学与工程学报, 2020, 39(增刊1): 2725-2732. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2020S1014.htm

    DENG Huafeng, LI Tao, LI Jianlin, et al. Study on calculation method of anisotropic acoustic and mechanical parameters of layered rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(S1): 2725-2732. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2020S1014.htm
    [19]
    李彦伟, 姜耀东, 杨英明, 等. 煤单轴抗压强度特性的加载速率效应研究[J]. 采矿与安全工程学报, 2016, 33(4): 754-760. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201604029.htm

    LI Yanwei, JIANG Yaodong, YANG Yingming, et al. Research on loading rate effect of uniaxial compressive strength of coal[J]. Journal of Mining & Safety Engineering, 2016, 33(4): 754-760. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201604029.htm
    [20]
    程昀, 宋战平, 金解放, 等. 应力卸载过程砂岩应力波传播及衰减特性试验研究[J]. 振动与冲击, 2020, 39(8): 151-158. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202008022.htm

    CHENG Yun, SONG Zhanping, JIN Jiefang, et al. An experimental study on stress wave propagation and attenuation of sandstone during stress unloading process[J]. Journal of Vibration and Shock, 2020, 39(8): 151-158. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202008022.htm
    [21]
    左建平, 谢和平, 孟冰冰, 等. 煤岩组合体分级加卸载特性的试验研究[J]. 岩土力学, 2011, 32(5): 1287-1296. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201105002.htm

    ZUO Jianping, XIE Heping, MENG Bingbing, et al. Experimental research on loading-unloading behavior of coal-rock combination bodies at different stress levels[J]. Rock and Soil Mechanics, 2011, 32(5): 1287-1296. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201105002.htm
    [22]
    左建平, 宋洪强. 煤岩组合体的能量演化规律及差能失稳模型[J]. 煤炭学报, 2022, 47(8): 3037-3051. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202208014.htm

    ZUO Jianping, SONG Hongqiang. Energy evolution law and differential energy instability model of coal-rock combined body[J]. Journal of China Coal Society, 2022, 47(8): 3037-3051. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202208014.htm
    [23]
    周阳, 苏生瑞, 马洪生. 循环荷载作用下绿泥石千枚岩弹性模量演化规律试验研究[J]. 中南大学学报(自然科学版), 2020, 51(3): 783-792. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202003024.htm

    ZHOU Yang, SU Shengrui, MA Hongsheng. Experimental research on elastic modulus evolution of chlorite phyllite under cyclic loading[J]. Journal of Central South University (Science and Technology), 2020, 51(3): 783-792. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202003024.htm
    [24]
    吴政, 张承娟. 单向荷载作用下岩石损伤模型及其力学特性研究[J]. 岩石力学与工程学报, 1996, 15(1): 55-61. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX601.007.htm

    WU Zheng, ZHANG Chengjuan. Investigation of rock damage model, and its mechanical behaviour[J]. Chinese Journal of Rock Mechanics and Engineering, 1996, 15(1): 55-61. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX601.007.htm
    [25]
    赵闯, 武科, 李术才, 等. 循环荷载作用下岩石损伤变形与能量特征分析[J]. 岩土工程学报, 2013, 35(5): 890-896. http://cge.nhri.cn/cn/article/id/15058

    ZHAO Chuang, WU Ke, LI Shucai, et al. Energy characteristics and damage deformation of rock subjected to cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(5): 890-896. (in Chinese) http://cge.nhri.cn/cn/article/id/15058
  • Related Articles

    [1]LÜ Xi-lin, ZENG Sheng, WANG Yuan-peng, MA Shao-kun, HUANG Mao-song. Physical model tests on stability of shield tunnel face in saturated gravel stratum[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 129-132. DOI: 10.11779/CJGE2019S2033
    [2]JIN Da-long, YUAN Da-jun, ZHENG Hao-tian, LI Xing-gao, DING Fei. Centrifugal model tests on face stability of slurry shield tunnels under high water pressures[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1653-1660. DOI: 10.11779/CJGE201909009
    [3]LI Wei-ping, LI Xing, XUE Ya-dong, ZHANG Sen, GE Jia-cheng. Model tests on face stability of shallow shield tunnels in sandy cobble strata[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S2): 199-203. DOI: 10.11779/CJGE2018S2040
    [4]XU Qian-wei, TANG Zhuo-hua, ZHU He-hua, WANG Gguo-fu, LU Lin-hai. Limit support pressure at excavation face of shield tunnels[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(7): 1234-1240. DOI: 10.11779/CJGE201707009
    [5]CHEN Meng-qiao, LIU Jian-kun, XIAO Jun-hua, TIAN Ze-ye. Face supporting pressure of slurry shield tunnel under high hydraulic pressure[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 163-169.
    [6]Lü Xi-lin, LI Feng-di, HUANG Mao-song, JIAO Qi-zhu, HU Wen-ting. 3D limit support pressure solution for shield tunnel face subjected to seepage[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk1): 108-112.
    [7]TANG Lü-jun, CHEN Ren-peng, YIN Xin-sheng, KONG Ling-gang, HUANG Bo, CHEN Yun-min. Centrifugal model tests on face stability of shield tunnels in dense sand[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(10): 1830-1838.
    [8]WANG Hao-ran, HUANG Mao-song, Lü Xi-lin, ZHOU Wei-xiang. Upper-bound limit analysis of stability of shield tunnel face considering seepage[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(9): 1696-1704.
    [9]Large-scale tests on face stability of shield tunnelling in dry cohesionless soil[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(1).
    [10]ZHU Wei, QIN Jianshe, LU Tinghao. Numerical study on face movement and collapse around shield tunnels in sand[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(8): 897-902.

Catalog

    Article views (538) PDF downloads (191) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return