• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
HAN Junyan, LI Yufeng, ZHONG Zilan, MIAO Huiquan, DU Xiuli. Seismic vulnerability assessment of buried corroded steel pipes under different site conditions[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(4): 774-783. DOI: 10.11779/CJGE20230033
Citation: HAN Junyan, LI Yufeng, ZHONG Zilan, MIAO Huiquan, DU Xiuli. Seismic vulnerability assessment of buried corroded steel pipes under different site conditions[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(4): 774-783. DOI: 10.11779/CJGE20230033

Seismic vulnerability assessment of buried corroded steel pipes under different site conditions

More Information
  • Received Date: January 10, 2023
  • Available Online: June 27, 2023
  • A nonlinear interaction analysis model for pipelines and soils is established to evaluate the anti-seismic performance of corroded steel pipes buried in different sites. Based on the incremental dynamic time-history analysis method, the seismic vulnerability of corroded steel pipes in different sites is analyzed by taking the structural strain of buried steel pipes as the performance parameter. The results show that under the same site condition and service age, the probability of pipelines in a basically intact state decreases gradually, while that in a seriously damaged state increases gradually with the increase of earthquake intensity. Under the same site condition, the slope of the curve of moderately damaged limit becomes significantly larger than that of the curve of basic ally intact limit, but the failure rate of pipelines decreases gradually with the increase of their service age. In the weak site, the pipelines with 50 years of service age are moderately damaged when the seismic fortification intensity is 8 degrees. Under the same earthquake intensity and service age, the failure probability of the pipelines that reaches the basically intact limit and moderately damaged limit gradually increases with the decrease of the site equivalent shear wave velocity. The failure probability is the highest in the weak field. Under the same service age, the peak acceleration of ground motion that the pipelines reach the moderate damage or severe damage decreases obviously with the decrease of the site equivalent shear wave velocity. The damage of pipelines in soft field at lower seismic intensity is even higher than that in hard field at higher seismic intensity. This study may provide reference for the earthquake damage prediction and post-disaster loss assessment of buried corroded pipelines in different sites.
  • [1]
    张杰. 腐蚀管道结构可靠性评价与维修策略优化[D]. 北京: 中国石油大学, 2020.

    ZHANG Jie. Structural Reliability Evaluation and Maintenance Strategy Optimization of Corroded Pipelines[D]. Beijing: China University Of Petroleum, 2020. (in Chinese)
    [2]
    BAI X L, HE B, HAN P J, et al. Corrosion behavior and mechanism of X80 steel in silty soil under the combined effect of salt and temperature[J]. RSC Advances, 2022, 12: 129-147. doi: 10.1039/D1RA08249C
    [3]
    马晓凤. 埋地保温管道腐蚀原因分析和腐蚀机理研究[D]. 西安: 西安石油大学, 2021.

    MA Xiaofeng. Corrosion Cause Analysis and Corrosion Mechanism Research of Buried Thermal Insulation Pipeline[D]. Xi'an: Xi'an Shiyou University, 2021. (in Chinese)
    [4]
    WANG Y H, ZHANG P, QIN G J. Reliability assessment of pitting corrosion of pipeline under spatiotemporal earthquake including spatial-dependent corrosion growth[J]. Process Safety and Environmental Protection, 2021, 148: 166-178. doi: 10.1016/j.psep.2020.10.005
    [5]
    方卓钰, 董绍华, 段宇航. 含双点腐蚀缺陷海底管道剩余强度及失效分析[C]// 2021 IPPTC国际石油石化技术会议论文集, 北京, 2021: 546-558.

    FANG Zhuoyu, DONG Shaohua, DUAN Yuhang. Residual strength and failure analysis of submarine pipeline with double pitting corrosion defects[C]// Proceedings of 2021IPPTC International Petroleum and Petrochemical Technology Conference, Beijing, 2021: 546-558. (in Chinese)
    [6]
    ARUMUGAM T, KARUPPANAN S, OVINIS M. Finite element analyses of corroded pipeline with single defect subjected to internal pressure and axial compressive stress[J]. Marine Structures, 2020, 72(C): 1-21.
    [7]
    AMANDI K U, DIEMUODEKE E O, BRIGGS T A. Model for remaining strength estimation of a corroded pipeline with interacting defects for oil and gas operations[J]. Cogent Engineering, 2019, 6(1): 1-9.
    [8]
    MOHSEN A, REZA B M. A new approach for finite element based reliability evaluation of offshore corroded pipelines[J]. International Journal of Pressure Vessels and Piping, 2021, 193: 1-13.
    [9]
    ZHANG W, SHOKRABADI M, BOZORGNIA Y, et al. A methodology for fragility analysis of buried water pipes considering coupled horizontal and vertical ground motions[J]. Computers and Geotechnics, 2020, 126: 1-22.
    [10]
    王书锐. 垫衬法加固前后地下供水管道抗震易损性分析[D]. 北京: 北京工业大学, 2019.

    WANG Shurui. Seismic Vulnerability Analysis of Underground Water Supply Pipes Before and After Reinforcement by Cushion Lining Method[D]. Beijing: Beijing University of Technology, 2019. (in Chinese)
    [11]
    贺金川, 韩峰, 郑山锁, 等. 酸性土壤环境中多龄期埋地钢管地震易损性分析[J]. 天津大学学报, 2020, 53(9): 881-889. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDX202009001.htm

    HE Jinchuan, HAN Feng, ZHENG Shansuo, et al. Seismic vulnerability analysis of multi-age buried steel pipes in an acidic soil environment[J]. Journal of Tianjin University, 2020, 53(9): 881-889. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDX202009001.htm
    [12]
    谢孝奎, 贺金川, 郑山锁, 等. 碱性及近中性土壤环境中埋地钢管时变地震易损性分析[J]. 天津大学学报, 2020, 53(12): 1254-1263. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDX202012006.htm

    XIE Xiaokui, HE Jinchuan, ZHENG Shansuo, et al. Time-varying seismic fragility analysis of buried steel pipes in alkaline and near-neutral soil environments[J]. Journal of Tianjin University, 2020, 53(12): 1254-1263. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDX202012006.htm
    [13]
    姜华. 埋地钢管在地震波作用下的响应分析[D]. 武汉: 华中科技大学, 2011.

    JIANG Hua. Response Analysis of Buried Pipelines under Seismic Waves[D]. Wuhan: Huazhong University of Science and Technology, 2011. (in Chinese)
    [14]
    侯忠良. 地下管线抗震[M]. 北京: 学术书刊出版社, 1990.

    HOU Zhongliang. Earthquake Resistance of Underground Pipelines[M]. Beijing: Academic Book Publishing House, 1990. (in Chinese)
    [15]
    城市轨道交通结构抗震设计规范: GB 50909—2014[S]. 北京: 中国标准出版社, 2014.

    Code for Seismic Design of Urban Rail Transit Structures: GB 50909—2014[S]. Beijing: Standards Press of China, 2014. (in Chinese)
    [16]
    American Lifelines Alliance(ALA). Guidelines for the Design of Buried Steel Pipe[M]. American Society of Civil Engineers, 2001.
    [17]
    American Lifelines Alliance(ALA). Seismic Guidelines for Water Pipelines[M]. American Society of Civil Engineers, 2005.
    [18]
    DADFAR B, M. NAGGAR M E, NASTEV M. Vulnerability of buried energy pipelines subject to earthquake-triggered transverse landslides in permafrost thawing slopes[J]. Journal of Pipeline Systems Engineering and Practice, 2018, 9(4): 1-12.
    [19]
    韩俊艳, 郭之科, 李满君, 等. 纵向非一致激励下非均匀场地中埋地管道的振动台试验研究[J]. 岩土工程学报, 2021, 43(6): 1147-1156. doi: 10.11779/CJGE202106019

    HAN Junyan, GUO Zhike, LI Manjun, et al. Shaking table tests on buried pipelines in inhomogeneous soil under longitudinal non-uniform seismic excitation[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(6): 1147-1156. (in Chinese) doi: 10.11779/CJGE202106019
    [20]
    黄涛, 陈小平, 王向东, 等. pH值对Q235钢在模拟土壤中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2016, 36(1): 31-38. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGFF201601005.htm

    HUANG Tao, CHEN Xiaoping, WANG Xiangdong, et al. Effect of pH value on corrosion behavior of Q235 steel in an artificial soil[J]. Journal of Chinese Society for Corrosion and Protection, 2016, 36(1): 31-38. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGFF201601005.htm
    [21]
    ZHENG S S, ZHANG X H, ZHAO X R. Experimental investigation on seismic performance of corroded steel columns in offshore atmospheric environment[J]. Structural Design of Tall and Special Buildings, 2019, 28(4): 1-17.
    [22]
    Applied Technology Council, Federal Emergency Management Agency. Quantification of Building Seismic Performance Factors[R]. America: FEMA, 2008.
    [23]
    杜修力, 韩俊艳, 李立云. 长输埋地管道振动台试验设计中相似关系的选取[J]. 防灾减灾工程学报, 2013, 33(3): 246-252. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201303003.htm

    DU Xiuli, HAN Junyan, LI Liyun. Selection of shaking table test similarity relations for long-distance buried pipeline[J]. Journal of Disaster Prevention and Mitigation Engineering, 2013, 33(3): 246-252. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201303003.htm
    [24]
    ARGYROUDIS S A, PITILAKIS K D. Seismic fragility curves of shallow tunnels in alluvial deposits[J]. Soil Dynamics and Earthquake Engineering, 2011, 35: 1-12.
    [25]
    Hazus User & Technical Manuals[M]. Washington D C: Federal Emergency Management Agency and National Institute of Building Science, 2004.
    [26]
    刘爱文. 管道抗震设计规范有关地震作用的综述[J]. 国际地震动态, 2007(9): 29-35. https://www.cnki.com.cn/Article/CJFDTOTAL-GJZT200709004.htm

    LIU Aiwen. Discussion on the seismic input proposed by the different countries' seismic codes of pipeline[J]. Recent Developments in World Seismology, 2007(9): 29-35. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GJZT200709004.htm
    [27]
    ZERVA A. Pipeline response to directionally and spatially correlated seismic ground motions[J]. Journal of Pressure Vessel Technology, 1993, 115: 53-58.
    [28]
    生命线工程地震破坏等级划分: GB/T 24336—2009[S]. 北京: 中国标准出版社, 2009.

    Classification of Earthquake Damage to Lifeline Engineering: GB/T 24336—2009[S]. Beijing: Standards Press of China, 2009. (in Chinese)
    [29]
    蒋家卫, 许成顺, 杜修力, 等. 浅埋地铁车站地下框架结构抗震设计的最优地震动强度指标[J]. 岩土工程学报, 2023, 45(2): 318-326. doi: 10.11779/CJGE20211498

    JIANG Jiawei, XU Chengshun, DU Xiuli, et al. Optimal index of earthquake intensity measures for seismic design of underground frame structure of shallow-buried subway station[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(2): 318-326. (in Chinese) doi: 10.11779/CJGE20211498
    [30]
    许建聪, 简文彬, 岳尚全. 深厚软土地层地震破坏的作用机理研究[J]. 岩石力学与工程学报, 2005, 24(2): 313-320. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX20050200P.htm

    XU Jiancong, JIAN Wenbin, YUE Shangquan. Study on earthquake failure mechanism of deep soft soil layer[J]. Journal of Rock Mechanics and Engineering, 2005, 24(2): 313-320. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX20050200P.htm
  • Related Articles

    [1]LÜ Xi-lin, ZENG Sheng, WANG Yuan-peng, MA Shao-kun, HUANG Mao-song. Physical model tests on stability of shield tunnel face in saturated gravel stratum[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 129-132. DOI: 10.11779/CJGE2019S2033
    [2]JIN Da-long, YUAN Da-jun, ZHENG Hao-tian, LI Xing-gao, DING Fei. Centrifugal model tests on face stability of slurry shield tunnels under high water pressures[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1653-1660. DOI: 10.11779/CJGE201909009
    [3]LI Wei-ping, LI Xing, XUE Ya-dong, ZHANG Sen, GE Jia-cheng. Model tests on face stability of shallow shield tunnels in sandy cobble strata[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S2): 199-203. DOI: 10.11779/CJGE2018S2040
    [4]XU Qian-wei, TANG Zhuo-hua, ZHU He-hua, WANG Gguo-fu, LU Lin-hai. Limit support pressure at excavation face of shield tunnels[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(7): 1234-1240. DOI: 10.11779/CJGE201707009
    [5]CHEN Meng-qiao, LIU Jian-kun, XIAO Jun-hua, TIAN Ze-ye. Face supporting pressure of slurry shield tunnel under high hydraulic pressure[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 163-169.
    [6]Lü Xi-lin, LI Feng-di, HUANG Mao-song, JIAO Qi-zhu, HU Wen-ting. 3D limit support pressure solution for shield tunnel face subjected to seepage[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk1): 108-112.
    [7]TANG Lü-jun, CHEN Ren-peng, YIN Xin-sheng, KONG Ling-gang, HUANG Bo, CHEN Yun-min. Centrifugal model tests on face stability of shield tunnels in dense sand[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(10): 1830-1838.
    [8]WANG Hao-ran, HUANG Mao-song, Lü Xi-lin, ZHOU Wei-xiang. Upper-bound limit analysis of stability of shield tunnel face considering seepage[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(9): 1696-1704.
    [9]Large-scale tests on face stability of shield tunnelling in dry cohesionless soil[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(1).
    [10]ZHU Wei, QIN Jianshe, LU Tinghao. Numerical study on face movement and collapse around shield tunnels in sand[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(8): 897-902.

Catalog

    Article views (349) PDF downloads (88) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return