• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
JIAN Tao, KONG Ling-wei, BAI Wei, WANG Jun-tao, LIU Bing-heng. Experimental study on effects of water content on small-strain shear modulus of undisturbed loess[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 160-165. DOI: 10.11779/CJGE2022S1029
Citation: JIAN Tao, KONG Ling-wei, BAI Wei, WANG Jun-tao, LIU Bing-heng. Experimental study on effects of water content on small-strain shear modulus of undisturbed loess[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 160-165. DOI: 10.11779/CJGE2022S1029

Experimental study on effects of water content on small-strain shear modulus of undisturbed loess

More Information
  • Received Date: September 27, 2022
  • Available Online: February 06, 2023
  • The small-strain shear modulus and degradation mode of soils provide the important fundamental information for analyzing and evaluating the dynamic response of soils to earthquake in geotechnical engineering. The resonant column tests on the undisturbed loess with different water contents and confining pressures are carried out to investigate the effects of the water content and confining pressure on the small-strain shear modulus. The results show that the water content and confining pressure have significant effects on the shear modulus and degradation mode of the undisturbed loess. More specifically, udner the same water content, the shear modulus increases with an increase in the confining pressure, while an increase in the water content leads to a decrease in the shear modulus. The loess with high water content and low confining pressure shows faster shear modulus degradation. According to the test results, the correlation between the fitting parameters A and n in Hardin's equation and the water content is analyzed, based on which a modified Hardin's equation considering the water content is established to predict the maximum shear modulus Gmax of the undisturbed loess.
  • [1]
    王峻, 王强, 杨宝平, 等. 基于含水率变化的黄土场地震陷评价预测[J]. 岩石力学与工程学报, 2015, 34(10): 2155–2160. doi: 10.13722/j.cnki.jrme.2015.0383

    WANG Jun, WANG Qian, YANG Bao-ping, et al. Seismic subsidence predication of loess site based on changes of water content[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34 (10): 2155–2160. (in Chinese) doi: 10.13722/j.cnki.jrme.2015.0383
    [2]
    徐洁, 赵文博, 陈永辉, 等. 非饱和黄土初始剪切模量与孔径分布试验研究[J]. 岩土工程学报, 2017, 39(增刊1): 227–231. doi: 10.11779/CJGE2017S1045

    XU Jie, ZHAO Wen-bo, CHEN Yong-hui et al. Experimental study on initial shear modulus and pore-size distribution of unsaturated loess[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(S1): 227–231. (in Chinese) doi: 10.11779/CJGE2017S1045
    [3]
    WANG F T, LI D Q, DU W Q, et al. Bender element measurement for small-strain shear modulus of compacted loess[J]. International Journal of Geomechanics, 2021, 21(5): 04021063. doi: 10.1061/(ASCE)GM.1943-5622.0002004
    [4]
    蔡国庆, 张策, 黄哲文, 等. 含水率对砂质Q3黄土抗剪强度影响的试验研究[J]. 岩土工程学报, 2020, 42(增刊2): 32–36. doi: 10.11779/CJGE2020S2006

    CAI Guo-qing, ZHANG Ce, HUANG Zhe-wen, et al. Experimental study on influences of moisture content on shear strength of unsaturated loess[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S2): 32–36. (in Chinese) doi: 10.11779/CJGE2020S2006
    [5]
    李甜果, 孔令伟, 舒荣军. 不同含水率膨胀土动剪切模量特征与原位Gγ衰减曲线确定方法[J]. 振动与冲击, 2021, 40(23): 91–99. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202123013.htm

    LI Tian-guo, KONG Ling-wei, SHU Rong-jun. Dynamic shear modulus characteristics of expansive soil with different moisture contents and determination method of in situ Gγ decay curve[J]. Journal of Vibration and Shock, 2021, 40(23): 91–99. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202123013.htm
    [6]
    刘炳恒, 孔令伟, 舒荣军, 等. 原生各向异性影响下湛江黏土小应变剪切模量特征[J]. 岩土工程学报, 2021, 43(增刊2): 19–22. doi: 10.11779/CJGE2021S2005

    LIU Bing-heng, KONG Ling-wei, SHU Rong-jun, et al. Characteristics of small-strain shear modulus of Zhanjiang clay under influence of inherent anisotropy[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 19–22. (in Chinese) doi: 10.11779/CJGE2021S2005
    [7]
    李小梅, 王芳, 韩林, 等. 珊瑚砂最大剪切模量和阻尼比的共振柱试验研究[J]. 岩土工程学报, 2020, 42(增刊1): 60–64. doi: 10.11779/CJGE2020S1012

    LI Xiao-mei, WANG Fang, HAN Lin, et al. Resonant column tests on maximum shear modulus and damping ratio of coral sand[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S1): 60–64. (in Chinese) doi: 10.11779/CJGE2020S1012
    [8]
    安亮, 邓津, 郑志华, 等. 固原重塑黄土动力特性共振柱试验研究[J]. 地震工程学报, 2019, 41(4): 949–956. doi: 10.3969/j.issn.1000-0844.2019.04.949

    AN Liang, DENG Jin, ZHENG Zhi-hua, et al. Resonance column tests on the dynamic characteristics of remolded loess in Guyuan[J]. China Earthquake Engineering Journal, 2019, 41(4): 949–956. (in Chinese) doi: 10.3969/j.issn.1000-0844.2019.04.949
    [9]
    宋丙辉. 兰州黄土的动力特性及其场地地震动反应[D]. 兰州: 兰州大学, 2017.

    SONG Bing-hui. Study on the Dynamic Properties of Lanzhou Loess and Associated Site Response Analysis[D]. Lanzhou: Lanzhou University, 2017. (in Chinese)
    [10]
    SONG B H, TSINARIS A, ANASTASIADIS A, et al. Small-strain stiffness and damping of Lanzhou loess[J]. Soil Dynamics and Earthquake Engineering, 2017, 95: 96–105. doi: 10.1016/j.soildyn.2017.01.041
    [11]
    黄志全, 李磊, 贾景超, 等. 非饱和黄土动剪切模量和阻尼比共振柱试验研究[J]. 人民长江, 2015, 46(5): 69–72. doi: 10.16232/j.cnki.1001-4179.2015.05.016

    HUANG Zhi-quan, LI Lei, JIA Jing-chao, et al. Study of resonant column experiment of dynamic shear module and damping ratio of unsaturated loess[J]. Yangtze River, 2015, 46(5): 69–72. (in Chinese) doi: 10.16232/j.cnki.1001-4179.2015.05.016
    [12]
    LIU X, ZHANG N, LAN H X. Effects of sand and water contents on the small-strain shear modulus of loess[J]. Engineering Geology, 2019, 260: 105202. doi: 10.1016/j.enggeo.2019.105202
    [13]
    NG C W W, BAGHBANREZVAN S, SADEGHI H, et al. Effect of specimen preparation techniques on dynamic properties of unsaturated fine-grained soil at high suctions[J]. Canadian Geotechnical Journal, 2017, 54(9): 1310–1319. doi: 10.1139/cgj-2016-0531
    [14]
    HARDIN B O, DRNEVICH V P. Shear modulus and damping in soils: design equations and curves[J]. Journal of the Soil Mechanics and Foundations Division, 1972, 98(7): 667–692. doi: 10.1061/JSFEAQ.0001760
    [15]
    DARENDELI M B. Development of a New Family of Normalized Modulus Reduction and Material Damping Curves[D]. Texas: The University of Texas at Austin, 2001.
    [16]
    HARDIN B O, BLACK W L. Vibration modulus of normally consolidated clay[J]. Journal of the Soil Mechanics and Foundations Division, 1968, 94(2): 353–369. doi: 10.1061/JSFEAQ.0001100
  • Related Articles

    [1]WANG Mingyuan, SUN Jizhu, WANG Yong, YANG Yang. Bounding surface plastic p-y model for a single laterally loaded pile in sand[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S2): 85-90. DOI: 10.11779/CJGE2023S20006
    [2]YANG Guang-hua, JIA Kai, LI Ze-yuan, LI Zhuo-xun. p-y curve method based on tangent modulus[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 1-6. DOI: 10.11779/CJGE2021S2001
    [3]YU Jian, ZHU Jun-lin, HUANG Mao-song, SHEN Kan-min. T-EMSD-based p-y curve of laterally loaded piles in clay considering small-strain behavior[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(11): 2029-2036. DOI: 10.11779/CJGE202111009
    [4]WANG An-hui, ZHANG Ding-wen, XIE Jing-chen. p-y curves for lateral bearing behavior of strength composite piles in soft clay[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 381-389. DOI: 10.11779/CJGE202002020
    [5]WANG Xiao-wei, YE Ai-jun, SHANG Yu. Shallow-layer p-y curves for single micropile in sands[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(9): 1736-1745. DOI: 10.11779/CJGE201809022
    [6]HUANG Mao-song, MA Hao, LI Sen, YU Jian, ZHANG Chen-rong. Static and cyclic p-y curves for laterally loaded piles in soft clay[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(z2): 9-12. DOI: 10.11779/CJGE2017S2003
    [7]HUANG Mao-song, YU Jian, ZHANG Chen-rong. p-y curves of laterally loaded piles in clay based on strain path approach[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(3): 400-409. DOI: 10.11779/CJGE201503002
    [8]LOU Xiao-ming, WU Hao, HUANG Jiang-feng. Determination of slope coefficient of subgrade reaction of saturated clay based on p-y curve[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(12): 2206-2212.
    [9]SUN Qing, YANG Min, WANG Hao, ZHOU Huan-yu. Tunnelling-induced lateral response of adjacent piles based on p-y curve[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(11): 2100-2107.
    [10]LI Yurun, YUAN Xiaoming, LIANG Yan. Modified calculation method of p-y curves for liquefied soil-pile interaction[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(4): 595-599.
  • Cited by

    Periodical cited type(9)

    1. 杨泽华,张高才,江帆,罗佳湘,张超. 不同水因素影响下土石混填体承载力学特性研究. 公路. 2024(06): 28-35 .
    2. 任明辉,赵光思,浦海,尹乾,王涛. 无黏性松散土石混合体剪切特性的结构效应及强度模型构建. 岩石力学与工程学报. 2024(07): 1707-1721 .
    3. 王辉,钮新强,马刚,周伟. 干湿循环作用下堆石料宏细观力学特性的离散元模拟研究. 岩土力学. 2024(S1): 665-676 .
    4. Zhou Wei,Hou Tianshun,Chen Ye,Wang Qi,Luo Yasheng,Zhang Yafei. Dynamic failure process of expanded polystyrene particle lightweight soil under cyclic loading using discrete element method. Earthquake Engineering and Engineering Vibration. 2024(04): 815-828 .
    5. 王治林,郑明明,夏敏,熊亮,吴祖锐,王凯. 不同边界对花岗岩三轴试验影响的三维离散元数值研究. 钻探工程. 2023(01): 150-158 .
    6. 崔熙灿,张凌凯,王建祥. 高堆石坝砂砾石料的细观参数反演及三轴试验模拟. 农业工程学报. 2022(04): 113-122 .
    7. 蒋成龙,许成顺,张小玲,王晓丽. 三维柔性边界构建方法及其对砾质土变形发展影响的离散元数值研究. 土木工程学报. 2021(05): 77-86 .
    8. 王恒通,王家全,唐毅,黄文勤. 组合Clump颗粒加筋砂土三轴剪切试验离散元模拟分析. 广西科技大学学报. 2021(03): 34-41 .
    9. 张强,汪小刚,赵宇飞,周家文,孟庆祥,周梦佳. 基于围压柔性加载的土石混合体大型三轴试验离散元模拟研究. 岩土工程学报. 2019(08): 1545-1554 . 本站查看

    Other cited types(26)

Catalog

    Article views (153) PDF downloads (22) Cited by(35)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return