• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
TONG Xiaodong, CI Xiang, SUN Renyun. Preliminary study on ecological sand fixation effects of biopolymers[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(1): 144-152. DOI: 10.11779/CJGE20221268
Citation: TONG Xiaodong, CI Xiang, SUN Renyun. Preliminary study on ecological sand fixation effects of biopolymers[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(1): 144-152. DOI: 10.11779/CJGE20221268

Preliminary study on ecological sand fixation effects of biopolymers

  • The desertification control is a global challenge. Compared to the traditional desert sand fixation techniques, the biopolymers as environmentally friendly solidification materials can effectively bond desert sand to resist wind erosion and improve its growth promoting properties to promote plant growth, ultimately achieving permanent sand fixation. Based on the aforementioned ideas, the ecological sand fixation effects of xanthan gum (XG), guar gum (GG) and their equal mass mixed gum (MG) are studied through the surface hardness tests, water retention performance tests and plant growth tests. The surface hardness tests show that the biopolymers can effectively bond desert sand particles. The XG, GG and MG solutions with a mass fraction of 0.1% increase the surface pressure strength of desert sand by 9.4, 5.3 and 8.0 times, respectively. The water retention performance tests show that the improvement effects of the biopolymers on the water retention performance of desert sand increase with the increase of solution mass fraction. Moreover, under high temperature curing conditions at 40℃, the comparative results of the water retention performance of the three biopolymers are as follows: XG > MG > GG. The plant growth tests indicate that under indoor conditions, the biopolymers can shorten plant emergence time, increase plant emergence rate and seedling height, and significantly improve the growth promoting performance of desert sand. The preliminary researches indicate that the use of the biopolymers for ecological sand fixation is theoretically feasible.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return