• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
MU Wen, TANG Chaosheng, CHENG Qing, TIAN Bengang, LIU Weijie, HU Huicong, SHI Bin. Effects of cracks on evaporation process of water in soils[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(12): 2641-2648. DOI: 10.11779/CJGE20221115
Citation: MU Wen, TANG Chaosheng, CHENG Qing, TIAN Bengang, LIU Weijie, HU Huicong, SHI Bin. Effects of cracks on evaporation process of water in soils[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(12): 2641-2648. DOI: 10.11779/CJGE20221115

Effects of cracks on evaporation process of water in soils

More Information
  • Received Date: September 07, 2022
  • Available Online: March 13, 2023
  • Under the action of arid climate, the soils in the engineering are prone to develop shrinkage cracks, and the existence of cracks has an important influence on the engineering properties of the soils. In order to study the effects of cracks on the evaporation process of water in the soils, a series of laboratory evaporation experiments are carried out on the soils with cracks under simulated drought conditions. A series of samples with different crack numbers (0~3) and crack widths (5, 10 and 15 mm) are prepared by using the method of prefabricated cracks. Based on the results of water content and evaporation rate with drying time, the influence mechanism of crack numbers, widths and distribution characteristics on the evaporation process is analyzed. The results show that: (1) The cracks have a significant effect on the evaporation process of water in the soils; (2) The evaporation rate and the critical water content corresponding to the falling rate stage of the samples increase with the increase of the number of cracks. Under the crack width of 5 mm, the evaporation rate of the sample increases by about 14% for each additional crack, and the evaporation flux of the corresponding crack surface is about 15%~18% of the sample surface. (3) The evaporation rate of the samples and the evaporation contribution of the crack surface also increase with the increase of the crack width. The evaporation rate of the sample increases by about 2% for every increase of the crack width of 1 mm. When the crack width increases from 5 to 15 mm, the evaporation flux of the corresponding crack surface increases from 18% to 51% of the sample surface. However, the crack width has no effects on the critical water content when the samples enter the falling rate stage. (4) The effects of crack distribution on evaporation rate are mainly controlled by the relative humidity gradient and heat transfer in crack evaporation surface and crack cavity, and there may be a threshold effect of crack width.
  • [1]
    MASSON-DELMOTTE V, ZHAI P, PIRANI A, et al. Contribution of working group Ⅰ to the sixth assessment report of the intergovernmental panel on climate change[J]. Clim Change, 2021, 3: 31.
    [2]
    中国气象局. 中国极端天气气候事件和灾害风险管理与适应国家评估报告发布[J]. 中国应急管理, 2015(3): 63. https://www.cnki.com.cn/Article/CJFDTOTAL-YIGU201503019.htm

    China Meteorological Administration. China national assessment report on risk management and adaptation of climate extremes and disasters[J]. China Emergency Management News, 2015(3): 63. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YIGU201503019.htm
    [3]
    唐朝生. 极端气候工程地质: 干旱灾害及对策研究进展[J]. 科学通报, 2020, 65(27): 3009-3027, 3008. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202027011.htm

    TANG Shengtang. Extrem climate engineering geology: soil engineering properties response to drought climate and measures for disaster mitigation[J]. Chinese Science Bulletin, 2020, 65(27): 3009-3027, 3008. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202027011.htm
    [4]
    CUI Y J, TANG C S, TANG A M, et al. Investigation of soil desiccation cracking using an environmental chamber[J]. Rivista Italiana di Geotecnica, 2014, 24(1): 9-20.
    [5]
    曾浩, 唐朝生, 刘昌黎, 等. 控制厚度条件下土体干缩开裂的界面摩擦效应[J]. 岩土工程学报, 2019, 41(3): 544-553. doi: 10.11779/CJGE201903017

    ZENG Hao, TANG Chaosheng, LIU Changli, et al. Effects of boundary friction and layer thickness on desiccation cracking behaviors of soils[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(3): 544-553. (in Chinese) doi: 10.11779/CJGE201903017
    [6]
    林朱元, 唐朝生, 曾浩, 等. 土体干缩开裂过程的边界效应试验与离散元模拟[J]. 岩土工程学报, 2020, 42(2): 372-380. doi: 10.11779/CJGE202002019

    LIN Zhuyuan, TANG Chaosheng, ZENG Hao, et al. Laboratory characterization and discrete element modeling of desiccation cracking behavior of soils under different boundary conditions[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 372-380. (in Chinese) doi: 10.11779/CJGE202002019
    [7]
    徐其良, 唐朝生, 刘昌黎, 等. 土体干缩裂隙发育过程及断裂力学机制研究进展[J]. 地球科学与环境学报, 2018, 40(2): 223-236. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX201802010.htm

    XU Qiliang, TANG Chaosheng, LIU Changli, et al. Review on soil desiccation cracking behavior and the mechanism related to fracture mechanics[J]. Journal of Earth Sciences and Environment, 2018, 40(2): 223-236. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX201802010.htm
    [8]
    李生林, 施斌, 杜延军. 中国膨胀土工程地质研究[J]. 自然杂志, 1997, 19(2): 82-86. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZZ199702007.htm

    LI Shenglin, SHI Bin, DU Yanjun. Study on the engineering geology of expansive soil in China[J]. Nature Magazine, 1997, 19(2): 82-86. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZZ199702007.htm
    [9]
    冷挺, 唐朝生, 徐丹, 等. 膨胀土工程地质特性研究进展[J]. 工程地质学报, 2018, 26(1): 112-128. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201801013.htm

    LENG Ting, TANG Chaosheng, XU Dan, et al. Advance on the engineering geological characteristics of expansive soil[J]. Journal of Engineering Geology, 2018, 26(1): 112-128. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201801013.htm
    [10]
    WANG L L, TANG C S, SHI B, et al. Nucleation and propagation mechanisms of soil desiccation cracks[J]. Engineering Geology, 2018, 238: 27-35.
    [11]
    MORRIS P H, GRAHAM J, WILLIAMS D J. Cracking in drying soils[J]. Canadian Geotechnical Journal, 1992, 29(2): 263-277.
    [12]
    VAN BAARS S. The horizontal failure mechanism of the Wilnis peat dyke[J]. Géotechnique, 2005, 55(4): 319-323.
    [13]
    EL MAARRY M R, KODIKARA J, WIJESSORIYA S, et al. Desiccation mechanism for formation of giant polygons on Earth and intermediate-sized polygons on Mars: results from a pre-fracture model[J]. Earth and Planetary Science Letters, 2012, 323/324: 19-26.
    [14]
    AGHAKOUCHAK A, FELDMAN D, HOERLING M, et al. Water and climate: recognize anthropogenic drought[J]. Nature, 2015, 524(7566): 409-411.
    [15]
    EL-MAARRY M R, WATTERS W, MCKEOWN N K, et al. Potential desiccation cracks on Mars: a synthesis from modeling, analogue-field studies, and global observations[J]. Icarus, 2014, 241: 248-268.
    [16]
    袁俊平, 殷宗泽. 膨胀土裂隙的量化指标与强度性质研究[J]. 水利学报, 2004, 35(6): 108-113. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200406019.htm

    YUAN Junping, YIN Zongze. Quantitative index of fissure and strength characteristics of fissured expansive soils[J]. Journal of Hydraulic Engineering, 2004, 35(6): 108-113. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200406019.htm
    [17]
    孔令伟, 陈建斌, 郭爱国, 等. 大气作用下膨胀土边坡的现场响应试验研究[J]. 岩土工程学报, 2007, 29(7): 1065-1073. http://www.cgejournal.com/cn/article/id/12554

    KONG Lingwei, CHEN Jianbin, GUO Aiguo, et al. Field response tests on expansive soil slopes under atmosphere[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(7): 1065-1073. (in Chinese) http://www.cgejournal.com/cn/article/id/12554
    [18]
    AMANO E, SALVUCCI G D. Detection and use of three signatures of soil-limited evaporation[J]. Remote Sensing of Environment, 1999, 67(1): 108-122.
    [19]
    QIU G Y, BEN-ASHER J. Experimental determination of soil evaporation stages with soil surface temperature[J]. Soil Science Society of America Journal, 2010, 74(1): 13-22.
    [20]
    唐朝生, 施斌, 顾凯. 土中水分的蒸发过程试验研究[J]. 工程地质学报, 2011, 19(6): 875-881. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201106011.htm

    TANG Chaosheng, SHI Bin, GU Kai. Experimental investigation on evaporation process of water in soil during drying[J]. Journal of Engineering Geology, 2011, 19(6): 875-881. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201106011.htm
    [21]
    TANG C S, CUI Y J, SHI B, et al. Desiccation and cracking behaviour of clay layer from slurry state under wetting-drying cycles[J]. Geoderma, 2011, 166(1): 111-118.
    [22]
    ZENG H, TANG C S, ZHU C, et al. Desiccation cracking of soil subjected to different environmental relative humidity conditions[J]. Engineering Geology, 2022, 297: 106536.
    [23]
    YAMANAKA T, TAKEDA A, SUGITA F. A modified surface-resistance approach for representing bare-soil evaporation: wind tunnel experiments under various atmospheric conditions[J]. Water Resources Research, 1997, 33(9): 2117-2128.
    [24]
    KAYYAL M. Effect of the moisture evaporative stages on the development of shrinkage cracks in soils[C]// Proceedings of the Unsaturated Soils F, Paris, 1996.
    [25]
    GILLILAND E R. Fundamentals of drying and air conditioning[J]. Industrial & Engineering Chemistry, 1938, 30(5): 506-514.
    [26]
    WILSON G W, FREDLUND D G, BARBOUR S L. The effect of soil suction on evaporative fluxes from soil surfaces[J]. Canadian Geotechnical Journal, 1997, 34(1): 145-155.
    [27]
    WILSON G, BARBOUR S, FREDLUND D. The prediction of evaporative fluxes from unsaturated soil surfaces[C]// First International Conference on Unsaturated. Paris, 1995.
    [28]
    TENG J D, YASUFUKU N, ZHANG S, et al. Modelling water content redistribution during evaporation from sandy soil in the presence of water table[J]. Computers and Geotechnics, 2016, 75: 210-224.
    [29]
    SONG R, CHU G, YE J, et al. Effects of surface soil mixed with sand on water infiltration and evaporation in laboratory[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(1): 109-14.
    [30]
    SHIMOJIMAA E, YOSHIOKA R, TAMAGAWA I. Salinization owing to evaporation from bare-soil surfaces and its influences on the evaporation[J]. Journal of Hydrology, 1996, 178(1/2/3/4): 109-136.
    [31]
    AN N, TANG C S, XU S K, et al. Effects of soil characteristics on moisture evaporation[J]. Engineering Geology, 2018, 239: 126-135.
    [32]
    徐士康, 唐朝生, 李昊达, 等. 土体水分蒸发模型研究进展[J]. 高校地质学报, 2017, 23(4): 640-649. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201704008.htm

    XU Shikang, TANG Chaosheng, LI Haoda, et al. Review on soil moisture evaporation model[J]. Geological Journal of China Universities, 2017, 23(4): 640-649. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201704008.htm
    [33]
    宋卫康, 王会杰, 朱翔, 等. 土体水分蒸发速率计算模型研究进展[J]. 路基工程, 2017(6): 20-25. https://www.cnki.com.cn/Article/CJFDTOTAL-LJGC201706005.htm

    SONG Weikang, WANG Huijie, ZHU Xiang, et al. Research advance on the models for calculating soil moisture evaporation rate[J]. Subgrade Engineering, 2017(6): 20-25. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LJGC201706005.htm
    [34]
    林宗泽, 唐朝生, 曾浩, 等. 基于红外热成像技术的土体水分蒸发过程研究[J]. 岩土工程学报, 2021, 43(4): 743-750. doi: 10.11779/CJGE202104017

    LIN Zongze, TANG Chaosheng, ZENG Hao, et al. Soil evaporation based on infrared thermal imaging technology[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(4): 743-750. (in Chinese) doi: 10.11779/CJGE202104017
    [35]
    FREDLUND D G, RAHARDJO H. Soil Mechanics for Unsaturated Soils[M]. New York: Wiley, 1993.
    [36]
    SCHERER G W. Theory of drying[J]. Journal of the American Ceramic Society, 1990, 73(1): 3-14.
    [37]
    ZHANG Y P, GU K, LI J W, et al. Effect of biochar on desiccation cracking characteristics of clayey soils[J]. Geoderma, 2020, 364: 114182.
  • Cited by

    Periodical cited type(3)

    1. 周振华,孔令伟,李甜果,舒荣军. 原状膨胀土裂隙演变性状的环境效应与表征. 岩土力学. 2025(02): 402-412 .
    2. 方华强,丁选明,张灵芝,李一夫,王红,辛义文,彭宇,李铮. 基于粒子图像测速技术的纤维改性珊瑚泥面层龟裂模型试验研究. 岩土力学. 2025(02): 368-380 .
    3. 吴庚,于怀昌,张中印,梁艳坤,王闯,吕寒雪. 干湿循环作用下高压实膨胀土及改性土裂隙演化规律及机理研究. 水利水电技术(中英文). 2024(S1): 370-377 .

    Other cited types(4)

Catalog

    Article views (469) PDF downloads (201) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return