• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
JIA Zhuo-long, YAN Chang-gen, LI Bo, SHI Yu-ling, LAN Heng-xing, XU Jiang-bo, BAO Han. Experimental study on erosion resistance and ecological slope protection of guar gum-treated fiber-reinforcement loess[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(10): 1881-1889. DOI: 10.11779/CJGE202210014
Citation: JIA Zhuo-long, YAN Chang-gen, LI Bo, SHI Yu-ling, LAN Heng-xing, XU Jiang-bo, BAO Han. Experimental study on erosion resistance and ecological slope protection of guar gum-treated fiber-reinforcement loess[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(10): 1881-1889. DOI: 10.11779/CJGE202210014

Experimental study on erosion resistance and ecological slope protection of guar gum-treated fiber-reinforcement loess

More Information
  • Received Date: August 16, 2021
  • Available Online: December 11, 2022
  • To improve the hydraulic characteristics of the fiber-reinforced loess, maintain the long-term stability of the loess slope, and promote the full play of the vegetation protection, the guar gum is used to cure the fiber-reinforced loess. The erosion resistance and the soil-water conservation capability of loess under different treatment methods are compared and analyzed by carrying out the direct shear tests, disintegration tests, penetration tests, soil-water characteristic tests and ecological slope protection tests. The results show that the addition of guar gum can significantly improve the erosion resistance and the soil-water conservation capability of fiber-reinforced loess. With the increase of guar gum content or curing age, the shear strength increases first and then decreases or stabilizes, and both the disintegration rate and the saturation permeability coefficient decrease first and then stabilize. The optimal guar gum content and curing age are 1.0% and 14 d. The optimally processed guar gum-treated fiber-reinforcement loess has better water retention capability, showing the excellent ecological slope protection effect under natural atmospheric rainfall conditions. The curing treatment of guar gum can promote fiber reinforcement, fill pores, bond loess particles, comprehensively improve the mechanical and hydraulic properties of the fiber-reinforced loess, and play a positive role in the process of engineering safety construction and soil-water conservation on the Loess Plateau.
  • [1]
    李广信, 陈轮, 郑继勤, 等. 纤维加筋粘性土的试验研究[J]. 水利学报, 1995, 26(6): 31–36. doi: 10.3321/j.issn:0559-9350.1995.06.005

    LI Guang-xin, CHEN Lun, ZHENG Ji-qin, et al. Experimental study on fiber-reinforced cohesive soil[J]. Journal of Hydraulic Engineering, 1995, 26(6): 31–36. (in Chinese) doi: 10.3321/j.issn:0559-9350.1995.06.005
    [2]
    介玉新, 李广信, 陈轮. 纤维加筋土和素土边坡的离心模型试验研究[J]. 岩土工程学报, 1998, 20(4): 12–15. doi: 10.3321/j.issn:1000-4548.1998.04.005

    JIE Yu-xin, LI Guang-xin, CHEN Lun. Study of centrifugal model tests on texsol and cohesive soil slopes[J]. Chinese Journal of Geotechnical Engineering, 1998, 20(4): 12–15. (in Chinese) doi: 10.3321/j.issn:1000-4548.1998.04.005
    [3]
    BABU S G L, VASUDEVAN A K, HALDAR S. Numerical simulation of fiber-reinforced sand behavior[J]. Geotextiles and Geomembranes, 2008, 26(2): 181–188. doi: 10.1016/j.geotexmem.2007.06.004
    [4]
    王德银, 唐朝生, 李建, 等. 纤维加筋非饱和黏性土的剪切强度特性[J]. 岩土工程学报, 2013, 35(10): 1933–1940. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201310029.htm

    WANG De-yin, TANG Chao-sheng, LI Jian, et al. Shear strength characteristics of fiber-reinforced unsaturated cohesive soils[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(10): 1933–1940. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201310029.htm
    [5]
    蔡奕, 施斌, 高玮, 等. 纤维石灰土工程性质的试验研究[J]. 岩土工程学报, 2006, 28(10): 1283–1287. doi: 10.3321/j.issn:1000-4548.2006.10.020

    CAI Yi, SHI Bin, GAO Wei, et al. Experimental study on engineering properties of fibre-lime treated soils[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(10): 1283–1287. (in Chinese) doi: 10.3321/j.issn:1000-4548.2006.10.020
    [6]
    CONSOLI N C, ARCARI BASSANI M A, FESTUGATO L. Effect of fiber-reinforcement on the strength of cemented soils[J]. Geotextiles and Geomembranes, 2010, 28(4): 344–351. doi: 10.1016/j.geotexmem.2010.01.005
    [7]
    唐朝生, 施斌, 蔡奕, 等. 聚丙烯纤维加固软土的试验研究[J]. 岩土力学, 2007, 28(9): 1796–1800. doi: 10.3969/j.issn.1000-7598.2007.09.006

    TANG Chao-sheng, SHI Bin, CAI Yi, et al. Experimental study on polypropylene fiber improving soft soils[J]. Rock and Soil Mechanics, 2007, 28(9): 1796–1800. (in Chinese) doi: 10.3969/j.issn.1000-7598.2007.09.006
    [8]
    唐朝生, 施斌, 刘春, 等. 影响黏性土表面干缩裂缝结构形态的因素及定量分析[J]. 水利学报, 2007, 38(10): 1186–1193. doi: 10.3321/j.issn:0559-9350.2007.10.006

    TANG Chao-sheng, SHI Bin, LIU Chun, et al. Factors affecting the surface cracking in clay due to drying shrinkage[J]. Journal of Hydraulic Engineering, 2007, 38(10): 1186–1193. (in Chinese) doi: 10.3321/j.issn:0559-9350.2007.10.006
    [9]
    卢浩, 晏长根, 杨晓华, 等. 麦秆纤维加筋土的抗冲蚀性及其防护效果试验研究[J]. 铁道科学与工程学报, 2017, 14(10): 2138–2145. doi: 10.3969/j.issn.1672-7029.2017.10.015

    LU Hao, YAN Chang-gen, YANG Xiao-hua, et al. Experimental research on anti-eroding property and protection effect of reinforced soil with straw fibers[J]. Journal of Railway Science and Engineering, 2017, 14(10): 2138–2145. (in Chinese) doi: 10.3969/j.issn.1672-7029.2017.10.015
    [10]
    卢浩, 晏长根, 贾卓龙, 等. 聚丙烯纤维加筋黄土的抗剪强度和崩解特性[J]. 交通运输工程学报, 2021, 21(2): 82–92. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202102010.htm

    LU Hao, YAN Chang-gen, JIA Zhuo-long, et al. Shear strength and disintegration properties of polypropylene fiber-reinforced loess[J]. Journal of Traffic and Transportation Engineering, 2021, 21(2): 82–92. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202102010.htm
    [11]
    安宁, 晏长根, 王亚冲, 等. 聚丙烯纤维加筋黄土抗侵蚀性能试验研究[J]. 岩土力学, 2021, 42(2): 501–510. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202102022.htm

    AN Ning, YAN Chang-gen, WANG Ya-chong, et al. Experimental study on anti-erosion performance of polypropylene fiber-reinforced loess[J]. Rock and Soil Mechanics, 2021, 42(2): 501–510. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202102022.htm
    [12]
    孙红, 姜开锋, 吴雪萍, 等. 软弱土路堤的玻璃纤维加筋土加固技术[J]. 地下空间与工程学报, 2014, 10(增刊2): 1893–1898. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE2014S2027.htm

    SUN Hong, JIANG Kai-feng, WU Xue-ping, et al. Glass fiber-reinforced soil technology for soft soil embankment[J]. Chinese Journal of Underground Space and Engineering, 2014, 10(S2): 1893–1898. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE2014S2027.htm
    [13]
    毛云程, 张得文, 李国玉, 等. 黄土路堑边坡植物纤维防护效果试验研究[J]. 防灾减灾工程学报, 2014, 34(5): 601–605. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201405011.htm

    MAO Yun-cheng, ZHANG De-wen, LI Guo-yu, et al. Study on plant fiber protection on expressway cutting slope in loess area[J]. Journal of Disaster Prevention and Mitigation Engineering, 2014, 34(5): 601–605. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201405011.htm
    [14]
    MILLER C J, RIFAI S. Fiber reinforcement for waste containment soil liners[J]. Journal of Environmental Engineering, 2004, 130(8): 891–895. doi: 10.1061/(ASCE)0733-9372(2004)130:8(891)
    [15]
    STUPP S I, BRAUN P V. Molecular manipulation of microstructures: biomaterials, ceramics, and semiconductors[J]. Science, 1997, 277(5330): 1242–1248. doi: 10.1126/science.277.5330.1242
    [16]
    HATAF N, GHADIR P, RANJBAR N. Investigation of soil stabilization using chitosan biopolymer[J]. Journal of Cleaner Production, 2018, 170: 1493–1500.
    [17]
    SUJATHA E R, SAISREE S. Geotechnical behaviour of guar gum-treated soil[J]. Soils and Foundations, 2019, 59(6): 2155–2166。
    [18]
    刘钊钊, 王谦, 钟秀梅, 等. 木质素改良黄土的持水性和水稳性[J]. 岩石力学与工程学报, 2020, 39(12): 2582–2592. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202012019.htm

    (LIU Zhao-zhao, WANG Qian, ZHONG Xiu-mei, et al. Water holding capacity and water stability of lignin-modified loess[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(12): 2582–2592. (in Chinese https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202012019.htm
    [19]
    HÜTTERMANN A, ZOMMORODI M, REISE K. Addition of hydrogels to soil for prolonging the survival of Pinus halepensis seedlings subjected to drought[J]. Soil and Tillage Research, 1999, 50(3/4): 295–304. https://www.sciencedirect.com/science/article/pii/S0167198799000239
    [20]
    CHANG I, PRASIDHI A K, IM J, et al. Soil treatment using microbial biopolymers for anti-desertification purposes[J]. Geoderma, 2015, 253/254: 39–47. https://www.sciencedirect.com/science/article/pii/S0016706115001123
    [21]
    CHANG I, IM J, CHO G C. Introduction of microbial biopolymers in soil treatment for future environmentally- friendly and sustainable geotechnical engineering[J]. Sustainability, 2016, 8(3): 251.
    [22]
    AYELDEEN M K, NEGM A M, EL SAWWAF M A. Evaluating the physical characteristics of biopolymer/soil mixtures[J]. Arabian Journal of Geosciences, 2016, 9(5): 1–13.
    [23]
    AYELDEEN M, NEGM A, EL-SAWWAF M, et al. Enhancing mechanical behaviors of collapsible soil using two biopolymers[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2017, 9(2): 329–339. https://www.sciencedirect.com/science/article/pii/S1674775516302736
    [24]
    CHEN R, LEE I, ZHANG L Y. Biopolymer stabilization of mine tailings for dust control[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2015, 141(2): 04014100.
    [25]
    SHARMA G, SHARMA S, KUMAR A, et al. Guar gum and its composites as potential materials for diverse applications: a review[J]. Carbohydrate Polymers, 2018, 199: 534–545. https://www.sciencedirect.com/science/article/pii/S0144861718308440
    [26]
    公路土工试验规程: JTG 3430—2020[S]. 北京: 人民交通出版社, 2020.

    Test Methods of Soils for Highway Engineering: JTG 3430—2020[S]. Beijing: China Communications Press, 2020. (in Chinese)
    [27]
    CHANG I, IM J, PRASIDHI A K, et al. Effects of Xanthan gum biopolymer on soil strengthening[J]. Construction and Building Materials, 2015, 74: 65–72. https://www.sciencedirect.com/science/article/pii/S0950061814011702
    [28]
    VAN GENUCHTEN M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980, 44(5): 892–898.
    [29]
    PUPPALA A J, PEDARLA A. Innovative ground improvement techniques for expansive soils[J]. Innovative Infrastructure Solutions, 2017, 2(1): 1–15.
    [30]
    张华, 吴争光. 封闭气泡对土壤渗透性影响的研究进展[J]. 三峡大学学报(自然科学版), 2009, 31(4): 52–56. https://www.cnki.com.cn/Article/CJFDTOTAL-WHYC200904014.htm

    ZHANG Hua, WU Zheng-guang. A review on effect of entrapped air on soil permeability[J]. Journal of China Three Gorges University (Natural Sciences), 2009, 31(4): 52–56. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WHYC200904014.htm
    [31]
    冉艳玲, 王益权, 张润霞, 等. 保水剂对土壤持水特性的作用机理研究[J]. 干旱地区农业研究, 2015, 33(5): 101–107. https://www.cnki.com.cn/Article/CJFDTOTAL-GHDQ201505020.htm

    RAN Yan-ling, WANG Yi-quan, ZHANG Run-xia, et al. Research on the mechanism of super absorbent polymer to soil water-holding characteristic[J]. Agricultural Research in the Arid Areas, 2015, 33(5): 101–107. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GHDQ201505020.htm
    [32]
    MCELRONE A J, CHOAT B, GAMBETTA G A, BRODERSEN C R. Water uptake and transport in vascular plants[J]. Nature Education Knowledge, 2013, 4(5): 6–18.
    [33]
    吴宏伟. 大气–植被–土体相互作用: 理论与机理[J]. 岩土工程学报, 2017, 39(1): 1–47. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201701002.htm

    NG C W W. Atmosphere- plant-soil interactions: theories and mechanisms[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(1): 1–47. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201701002.htm
  • Related Articles

    [1]TONG Xiaodong, CI Xiang, SUN Renyun. Preliminary study on ecological sand fixation effects of biopolymers[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(1): 144-152. DOI: 10.11779/CJGE20221268
    [2]BAI Yuxia, CHANG Shun, XIAO Henglin, LI Lihua, HE Jun, QIU Ji, ZHOU Wenzhuo, DENG Yongfeng. Research progress in ecological treatment of expansive soil[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S2): 60-66, 176. DOI: 10.11779/CJGE2024S20025
    [3]WANG Xiao-chun, WANG Yuan-ming, ZHANG Gui-rong, LI Deng-hua, ZHANG Jia-sheng. Mechanical effect of three-dimensional reinforced eco-structure on silty sand slopes[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S2): 91-95. DOI: 10.11779/CJGE2018S2019
    [4]LI Biao, CHAI Hua-feng, LIU Lin-shuang. Application and analysis of new type filter structure in slope protection engineering[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(zk1): 221-224. DOI: 10.11779/CJGE2016S1041
    [5]XU Li-li, LIU Li-jia, XU Zhao-wei, ZHANG Bin. Integrated protection technology for expansive soil slopes in seasonally frozen zones[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(zk1): 216-220. DOI: 10.11779/CJGE2016S1040
    [6]DING Yu, XIA Zhen-yao, XU Wen-nian, YANG Qi. In-situ shear tests on base material soil-rock interface interacted by roots[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(11): 2107-2113. DOI: 10.11779/CJGE201611022
    [7]XU Hua, LI Tianbin, ZHOU Xionghua, ZHANG Rubo. Field tests on JYC ecological base material for slope protection in high-cold areas[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(5): 799-804.
    [8]XIANG Yan, SHENG Jinbao, YANG Meng, ZHANG Shichen, YANG Zhenghua. Impacts on ecological environment due to dam removal or decommissioning[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(11): 1758-1764.
    [9]HUANG He, SHI Bin, LIU Jin, JIANG Hongtao, GAO Wei. Water-physical properties of expansive soils modified by STW ecotypic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(8): 1236-1240.
    [10]DUAN Xiangbao, MAO Changxi, SHI Weidong, WANG Huatang. Study on slope protection of Tongma levee against wave and seepage[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(2): 164-169.

Catalog

    Article views (211) PDF downloads (66) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return