Citation: | JIA Zhuo-long, YAN Chang-gen, LI Bo, SHI Yu-ling, LAN Heng-xing, XU Jiang-bo, BAO Han. Experimental study on erosion resistance and ecological slope protection of guar gum-treated fiber-reinforcement loess[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(10): 1881-1889. DOI: 10.11779/CJGE202210014 |
[1] |
李广信, 陈轮, 郑继勤, 等. 纤维加筋粘性土的试验研究[J]. 水利学报, 1995, 26(6): 31–36. doi: 10.3321/j.issn:0559-9350.1995.06.005
LI Guang-xin, CHEN Lun, ZHENG Ji-qin, et al. Experimental study on fiber-reinforced cohesive soil[J]. Journal of Hydraulic Engineering, 1995, 26(6): 31–36. (in Chinese) doi: 10.3321/j.issn:0559-9350.1995.06.005
|
[2] |
介玉新, 李广信, 陈轮. 纤维加筋土和素土边坡的离心模型试验研究[J]. 岩土工程学报, 1998, 20(4): 12–15. doi: 10.3321/j.issn:1000-4548.1998.04.005
JIE Yu-xin, LI Guang-xin, CHEN Lun. Study of centrifugal model tests on texsol and cohesive soil slopes[J]. Chinese Journal of Geotechnical Engineering, 1998, 20(4): 12–15. (in Chinese) doi: 10.3321/j.issn:1000-4548.1998.04.005
|
[3] |
BABU S G L, VASUDEVAN A K, HALDAR S. Numerical simulation of fiber-reinforced sand behavior[J]. Geotextiles and Geomembranes, 2008, 26(2): 181–188. doi: 10.1016/j.geotexmem.2007.06.004
|
[4] |
王德银, 唐朝生, 李建, 等. 纤维加筋非饱和黏性土的剪切强度特性[J]. 岩土工程学报, 2013, 35(10): 1933–1940. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201310029.htm
WANG De-yin, TANG Chao-sheng, LI Jian, et al. Shear strength characteristics of fiber-reinforced unsaturated cohesive soils[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(10): 1933–1940. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201310029.htm
|
[5] |
蔡奕, 施斌, 高玮, 等. 纤维石灰土工程性质的试验研究[J]. 岩土工程学报, 2006, 28(10): 1283–1287. doi: 10.3321/j.issn:1000-4548.2006.10.020
CAI Yi, SHI Bin, GAO Wei, et al. Experimental study on engineering properties of fibre-lime treated soils[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(10): 1283–1287. (in Chinese) doi: 10.3321/j.issn:1000-4548.2006.10.020
|
[6] |
CONSOLI N C, ARCARI BASSANI M A, FESTUGATO L. Effect of fiber-reinforcement on the strength of cemented soils[J]. Geotextiles and Geomembranes, 2010, 28(4): 344–351. doi: 10.1016/j.geotexmem.2010.01.005
|
[7] |
唐朝生, 施斌, 蔡奕, 等. 聚丙烯纤维加固软土的试验研究[J]. 岩土力学, 2007, 28(9): 1796–1800. doi: 10.3969/j.issn.1000-7598.2007.09.006
TANG Chao-sheng, SHI Bin, CAI Yi, et al. Experimental study on polypropylene fiber improving soft soils[J]. Rock and Soil Mechanics, 2007, 28(9): 1796–1800. (in Chinese) doi: 10.3969/j.issn.1000-7598.2007.09.006
|
[8] |
唐朝生, 施斌, 刘春, 等. 影响黏性土表面干缩裂缝结构形态的因素及定量分析[J]. 水利学报, 2007, 38(10): 1186–1193. doi: 10.3321/j.issn:0559-9350.2007.10.006
TANG Chao-sheng, SHI Bin, LIU Chun, et al. Factors affecting the surface cracking in clay due to drying shrinkage[J]. Journal of Hydraulic Engineering, 2007, 38(10): 1186–1193. (in Chinese) doi: 10.3321/j.issn:0559-9350.2007.10.006
|
[9] |
卢浩, 晏长根, 杨晓华, 等. 麦秆纤维加筋土的抗冲蚀性及其防护效果试验研究[J]. 铁道科学与工程学报, 2017, 14(10): 2138–2145. doi: 10.3969/j.issn.1672-7029.2017.10.015
LU Hao, YAN Chang-gen, YANG Xiao-hua, et al. Experimental research on anti-eroding property and protection effect of reinforced soil with straw fibers[J]. Journal of Railway Science and Engineering, 2017, 14(10): 2138–2145. (in Chinese) doi: 10.3969/j.issn.1672-7029.2017.10.015
|
[10] |
卢浩, 晏长根, 贾卓龙, 等. 聚丙烯纤维加筋黄土的抗剪强度和崩解特性[J]. 交通运输工程学报, 2021, 21(2): 82–92. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202102010.htm
LU Hao, YAN Chang-gen, JIA Zhuo-long, et al. Shear strength and disintegration properties of polypropylene fiber-reinforced loess[J]. Journal of Traffic and Transportation Engineering, 2021, 21(2): 82–92. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202102010.htm
|
[11] |
安宁, 晏长根, 王亚冲, 等. 聚丙烯纤维加筋黄土抗侵蚀性能试验研究[J]. 岩土力学, 2021, 42(2): 501–510. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202102022.htm
AN Ning, YAN Chang-gen, WANG Ya-chong, et al. Experimental study on anti-erosion performance of polypropylene fiber-reinforced loess[J]. Rock and Soil Mechanics, 2021, 42(2): 501–510. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202102022.htm
|
[12] |
孙红, 姜开锋, 吴雪萍, 等. 软弱土路堤的玻璃纤维加筋土加固技术[J]. 地下空间与工程学报, 2014, 10(增刊2): 1893–1898. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE2014S2027.htm
SUN Hong, JIANG Kai-feng, WU Xue-ping, et al. Glass fiber-reinforced soil technology for soft soil embankment[J]. Chinese Journal of Underground Space and Engineering, 2014, 10(S2): 1893–1898. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE2014S2027.htm
|
[13] |
毛云程, 张得文, 李国玉, 等. 黄土路堑边坡植物纤维防护效果试验研究[J]. 防灾减灾工程学报, 2014, 34(5): 601–605. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201405011.htm
MAO Yun-cheng, ZHANG De-wen, LI Guo-yu, et al. Study on plant fiber protection on expressway cutting slope in loess area[J]. Journal of Disaster Prevention and Mitigation Engineering, 2014, 34(5): 601–605. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201405011.htm
|
[14] |
MILLER C J, RIFAI S. Fiber reinforcement for waste containment soil liners[J]. Journal of Environmental Engineering, 2004, 130(8): 891–895. doi: 10.1061/(ASCE)0733-9372(2004)130:8(891)
|
[15] |
STUPP S I, BRAUN P V. Molecular manipulation of microstructures: biomaterials, ceramics, and semiconductors[J]. Science, 1997, 277(5330): 1242–1248. doi: 10.1126/science.277.5330.1242
|
[16] |
HATAF N, GHADIR P, RANJBAR N. Investigation of soil stabilization using chitosan biopolymer[J]. Journal of Cleaner Production, 2018, 170: 1493–1500.
|
[17] |
SUJATHA E R, SAISREE S. Geotechnical behaviour of guar gum-treated soil[J]. Soils and Foundations, 2019, 59(6): 2155–2166。
|
[18] |
刘钊钊, 王谦, 钟秀梅, 等. 木质素改良黄土的持水性和水稳性[J]. 岩石力学与工程学报, 2020, 39(12): 2582–2592. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202012019.htm
(LIU Zhao-zhao, WANG Qian, ZHONG Xiu-mei, et al. Water holding capacity and water stability of lignin-modified loess[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(12): 2582–2592. (in Chinese https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202012019.htm
|
[19] |
HÜTTERMANN A, ZOMMORODI M, REISE K. Addition of hydrogels to soil for prolonging the survival of Pinus halepensis seedlings subjected to drought[J]. Soil and Tillage Research, 1999, 50(3/4): 295–304. https://www.sciencedirect.com/science/article/pii/S0167198799000239
|
[20] |
CHANG I, PRASIDHI A K, IM J, et al. Soil treatment using microbial biopolymers for anti-desertification purposes[J]. Geoderma, 2015, 253/254: 39–47. https://www.sciencedirect.com/science/article/pii/S0016706115001123
|
[21] |
CHANG I, IM J, CHO G C. Introduction of microbial biopolymers in soil treatment for future environmentally- friendly and sustainable geotechnical engineering[J]. Sustainability, 2016, 8(3): 251.
|
[22] |
AYELDEEN M K, NEGM A M, EL SAWWAF M A. Evaluating the physical characteristics of biopolymer/soil mixtures[J]. Arabian Journal of Geosciences, 2016, 9(5): 1–13.
|
[23] |
AYELDEEN M, NEGM A, EL-SAWWAF M, et al. Enhancing mechanical behaviors of collapsible soil using two biopolymers[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2017, 9(2): 329–339. https://www.sciencedirect.com/science/article/pii/S1674775516302736
|
[24] |
CHEN R, LEE I, ZHANG L Y. Biopolymer stabilization of mine tailings for dust control[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2015, 141(2): 04014100.
|
[25] |
SHARMA G, SHARMA S, KUMAR A, et al. Guar gum and its composites as potential materials for diverse applications: a review[J]. Carbohydrate Polymers, 2018, 199: 534–545. https://www.sciencedirect.com/science/article/pii/S0144861718308440
|
[26] |
公路土工试验规程: JTG 3430—2020[S]. 北京: 人民交通出版社, 2020.
Test Methods of Soils for Highway Engineering: JTG 3430—2020[S]. Beijing: China Communications Press, 2020. (in Chinese)
|
[27] |
CHANG I, IM J, PRASIDHI A K, et al. Effects of Xanthan gum biopolymer on soil strengthening[J]. Construction and Building Materials, 2015, 74: 65–72. https://www.sciencedirect.com/science/article/pii/S0950061814011702
|
[28] |
VAN GENUCHTEN M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980, 44(5): 892–898.
|
[29] |
PUPPALA A J, PEDARLA A. Innovative ground improvement techniques for expansive soils[J]. Innovative Infrastructure Solutions, 2017, 2(1): 1–15.
|
[30] |
张华, 吴争光. 封闭气泡对土壤渗透性影响的研究进展[J]. 三峡大学学报(自然科学版), 2009, 31(4): 52–56. https://www.cnki.com.cn/Article/CJFDTOTAL-WHYC200904014.htm
ZHANG Hua, WU Zheng-guang. A review on effect of entrapped air on soil permeability[J]. Journal of China Three Gorges University (Natural Sciences), 2009, 31(4): 52–56. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WHYC200904014.htm
|
[31] |
冉艳玲, 王益权, 张润霞, 等. 保水剂对土壤持水特性的作用机理研究[J]. 干旱地区农业研究, 2015, 33(5): 101–107. https://www.cnki.com.cn/Article/CJFDTOTAL-GHDQ201505020.htm
RAN Yan-ling, WANG Yi-quan, ZHANG Run-xia, et al. Research on the mechanism of super absorbent polymer to soil water-holding characteristic[J]. Agricultural Research in the Arid Areas, 2015, 33(5): 101–107. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GHDQ201505020.htm
|
[32] |
MCELRONE A J, CHOAT B, GAMBETTA G A, BRODERSEN C R. Water uptake and transport in vascular plants[J]. Nature Education Knowledge, 2013, 4(5): 6–18.
|
[33] |
吴宏伟. 大气–植被–土体相互作用: 理论与机理[J]. 岩土工程学报, 2017, 39(1): 1–47. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201701002.htm
NG C W W. Atmosphere- plant-soil interactions: theories and mechanisms[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(1): 1–47. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201701002.htm
|
[1] | TONG Xiaodong, CI Xiang, SUN Renyun. Preliminary study on ecological sand fixation effects of biopolymers[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(1): 144-152. DOI: 10.11779/CJGE20221268 |
[2] | BAI Yuxia, CHANG Shun, XIAO Henglin, LI Lihua, HE Jun, QIU Ji, ZHOU Wenzhuo, DENG Yongfeng. Research progress in ecological treatment of expansive soil[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S2): 60-66, 176. DOI: 10.11779/CJGE2024S20025 |
[3] | WANG Xiao-chun, WANG Yuan-ming, ZHANG Gui-rong, LI Deng-hua, ZHANG Jia-sheng. Mechanical effect of three-dimensional reinforced eco-structure on silty sand slopes[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S2): 91-95. DOI: 10.11779/CJGE2018S2019 |
[4] | LI Biao, CHAI Hua-feng, LIU Lin-shuang. Application and analysis of new type filter structure in slope protection engineering[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(zk1): 221-224. DOI: 10.11779/CJGE2016S1041 |
[5] | XU Li-li, LIU Li-jia, XU Zhao-wei, ZHANG Bin. Integrated protection technology for expansive soil slopes in seasonally frozen zones[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(zk1): 216-220. DOI: 10.11779/CJGE2016S1040 |
[6] | DING Yu, XIA Zhen-yao, XU Wen-nian, YANG Qi. In-situ shear tests on base material soil-rock interface interacted by roots[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(11): 2107-2113. DOI: 10.11779/CJGE201611022 |
[7] | XU Hua, LI Tianbin, ZHOU Xionghua, ZHANG Rubo. Field tests on JYC ecological base material for slope protection in high-cold areas[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(5): 799-804. |
[8] | XIANG Yan, SHENG Jinbao, YANG Meng, ZHANG Shichen, YANG Zhenghua. Impacts on ecological environment due to dam removal or decommissioning[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(11): 1758-1764. |
[9] | HUANG He, SHI Bin, LIU Jin, JIANG Hongtao, GAO Wei. Water-physical properties of expansive soils modified by STW ecotypic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(8): 1236-1240. |
[10] | DUAN Xiangbao, MAO Changxi, SHI Weidong, WANG Huatang. Study on slope protection of Tongma levee against wave and seepage[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(2): 164-169. |