Citation: | ZHOU Ya-dong, ZHAI Xin-dong, YANG Wen-qing. One-dimensional coupled model for large-deformation electroosmotic consolidation and heavy metal ion migration of silt[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(10): 1827-1836. DOI: 10.11779/CJGE202210008 |
[1] |
周建, 魏利闯, 詹芳蕾, 等. 生物表面活性剂及其与柠檬酸联合用于污泥重金属电动修复[J]. 湖南大学学报(自然科学版), 2019, 46(6): 109–119. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX201906016.htm
ZHOU Jian, WEI Li-chuang, ZHAN Fang-lei, et al. Electrokinetic repair of heavy metals in sludge by biosurfactant and its combination with citric acid[J]. Journal of Hunan University (Natural Sciences), 2019, 46(6): 109–119. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX201906016.htm
|
[2] |
TUAN P A, SILLANPÄÄ M. Migration of ions and organic matter during electro-dewatering of anaerobic sludge[J]. Journal of Hazardous Materials, 2010, 173(1/2/3): 54–61.
|
[3] |
TANG X Q, LI Q Y, WANG Z H, et al. Improved isolation of cadmium from paddy soil by novel technology based on pore water drainage with graphite-contained electro-kinetic geosynthetics[J]. Environmental Science and Pollution Research International, 2018, 25(14): 14244–14253. doi: 10.1007/s11356-018-1664-4
|
[4] |
ESRIG M I. Pore pressure, consolidation and electrokinetics[J]. Journal of the SMFD, ASCE, 1968, 94(SM4): 899–921.
|
[5] |
HU L, WU W, WU H. Numerical model of electro-osmotic consolidation in clay[J]. Géotechnique, 2012, 62(6): 537–541. doi: 10.1680/geot.11.T.008
|
[6] |
吴辉, 胡黎明. 考虑电导率变化的电渗固结模型[J]. 岩土工程学报, 2013, 35(4): 734–738. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201304020.htm
WU Hui, HU Li-ming. Numerical simulation of electro-osmosis consolidation considering variation of electrical conductivity[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(4): 734–738. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201304020.htm
|
[7] |
王军, 符洪涛, 蔡袁强, 等. 线性堆载下软黏土一维电渗固结理论与试验分析[J]. 岩石力学与工程学报, 2014, 33(1): 179–188. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201401021.htm
WANG Jun, FU Hong-tao, CAI Yuan-qiang, et al. Analyses of one-dimensional electroosmotic consolidation theory and test of soft clay under linear load[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(1): 179–188. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201401021.htm
|
[8] |
FELDKAMP J R, BELHOMME G M. Large-strain electrokinetic consolidation: theory and experiment in one dimension[J]. Géotechnique, 1990, 40(4): 557–568. doi: 10.1680/geot.1990.40.4.557
|
[9] |
王柳江, 刘斯宏, 王子健, 等. 堆载–电渗联合作用下的一维非线性大变形固结理论[J]. 工程力学, 2013, 30(12): 91–98. doi: 10.6052/j.issn.1000-4750.2012.04.0303
WANG Liu-jiang, LIU Si-hong, WANG Zi-jian, et al. A consolidation theory for one-dimensional large deformation problems under combined action of load and electroosmosis[J]. Engineering Mechanics, 2013, 30(12): 91–98. (in Chinese) doi: 10.6052/j.issn.1000-4750.2012.04.0303
|
[10] |
YUAN J, HICKS M A. Large deformation elastic electro-osmosis consolidation of clays[J]. Computers and Geotechnics, 2013, 54: 60–68. doi: 10.1016/j.compgeo.2013.05.012
|
[11] |
YUAN J, HICKS M A. Numerical simulation of elasto-plastic electro-osmosis consolidation at large strain[J]. Acta Geotechnica, 2016, 11(1): 127–143. doi: 10.1007/s11440-015-0366-z
|
[12] |
ZHOU Y D, DENG A, WANG C. Finite-difference model for one-dimensional electro-osmotic consolidation[J]. Computers and Geotechnics, 2013, 54: 152–165. doi: 10.1016/j.compgeo.2013.06.003
|
[13] |
冯源. 城市污水污泥电动脱水机理试验研究及多场耦合作用理论分析[D]. 杭州: 浙江大学, 2012.
FENG Yuan. Experimental Study on Electrokinetic Dewatering Mechanism of Sewage Sludge and Theoretical Analyses of Multi-Field Coupled Phenomenon[D]. Hangzhou: Zhejiang University, 2012. (in Chinese)
|
[14] |
CORAPCIOGLU M Y. Formulation of electro- chemicoosmotic processes in soils[J]. Transport in Porous Media, 1991, 6(4): 435–444.
|
[15] |
ALSHAWABKEH A N, ACAR Y B. Removal of contaminants from soils by electrokinetics: a theoretical treatise[J]. Journal of Environmental Science and Health Part A: Environmental Science and Engineering and Toxicology, 1992, 27(7): 1835–1861. doi: 10.1080/10934529209375828
|
[16] |
ALSHAWABKEH A N, ACAR Y B. Electrokinetic remediation: II theoretical model[J]. Journal of Geotechnical Engineering, 1996, 122(3): 186–196. doi: 10.1061/(ASCE)0733-9410(1996)122:3(186)
|
[17] |
YEUNG A T, DATLA S. Fundamental formulation of electrokinetic extraction of contaminants from soil[J]. Canadian Geotechnical Journal, 1995, 32(4): 569–583. doi: 10.1139/t95-060
|
[18] |
AL-HAMDAN A Z, REDDY K R. Electrokinetic remediation modeling incorporating geochemical effects[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134(1): 91–105. doi: 10.1061/(ASCE)1090-0241(2008)134:1(91)
|
[19] |
MASI M, CECCARINI A, IANNELLI R. Multi species reactive transport modelling of electrokinetic remediation of harbour sediments[J]. Journal of Hazardous Materials, 2017, 326: 187–196. doi: 10.1016/j.jhazmat.2016.12.032
|
[20] |
GOODISMAN J. Electrochemistry: Theoretical Foundations, Quantum and Statistical Mechanics, Thermodynamics, the Solid State[M]. New York: Wiley, 1987.
|
[21] |
YEUNG A T, HSU C N, MENON R M. Electrokinetic extraction of lead from kaolinites: I numerical modeling[J]. The Environmentalist, 2011, 31(1): 26–32. doi: 10.1007/s10669-010-9295-4
|
[22] |
KIM S O, KIM J J, KIM K W, et al. Models and experiments on electrokinetic removal of Pb(II) from kaolinite clay[J]. Separation Science and Technology, 2005, 39(8): 1927–1951. doi: 10.1081/SS-120030775
|
[23] |
ACAR Y B, ALSHAWABKEH A N. Electrokinetic remediation I: pilot-scale tests with lead-spiked kaolinite[J]. Journal of Geotechnical Engineering, 1996, 122(3): 173–185. doi: 10.1061/(ASCE)0733-9410(1996)122:3(173)
|
[24] |
YONG R N, WARKENTIN B P, PHADUNGCHEWIT Y, et al. Buffer capacity and lead retention in some clay materials[J]. Water, Air, and Soil Pollution, 1990, 53(1/2): 53–67.
|