• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZENG Kai-hua, LI Xue-jun, LU Shou-shan, LI Han-long. Unified plastic solutions to a circular tunnel under two-way unequal pressures and their applications[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(10): 1772-1779. DOI: 10.11779/CJGE202210002
Citation: ZENG Kai-hua, LI Xue-jun, LU Shou-shan, LI Han-long. Unified plastic solutions to a circular tunnel under two-way unequal pressures and their applications[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(10): 1772-1779. DOI: 10.11779/CJGE202210002

Unified plastic solutions to a circular tunnel under two-way unequal pressures and their applications

More Information
  • Received Date: October 12, 2021
  • Available Online: December 11, 2022
  • Various unified plastic solutions to a circular tunnel under two-way unequal pressures are presented corresponding with the in-situ stress distributions, such as the stress, displacement and radius of plastic zone and the ground response curve, where the elastic perfectly-plastic model is assumed for surrounding rock. The unified strength theory and a non-associated flow rule are adopted to account for the effects of the intermediate principal stress and dilatancy, respectively. Discussions and applications of the proposed solution are then performed. The results show that the unified plastic solutions of this study are the serialized and ordered ones with simple expressions, which reasonably consider the effects of three factors to have certain theoretical significance and good engineering application prospect. The two-way unequal pressures and the intermediate principal stress significantly affect the range of plastic zone, displacement of tunnel wall and the ground response curve. The supports with different bearing performances (or installation time) should be applied for different azimuth angles. The displacement of tunnel wall and stable deformation of surrounding rock increase with the increase of the dilatancy coefficient.
  • [1]
    王卫军, 董恩远, 袁超. 非等压圆形巷道围岩塑性区边界方程及应用[J]. 煤炭学报, 2019, 44(1): 105–114. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201901011.htm

    WANG Wei-jun, DONG En-yuan, YUAN Chao. Boundary equation of plastic zone of circular roadway in non-axisymmetric stress and its application[J]. Journal of China Coal Society, 2019, 44(1): 105–114. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201901011.htm
    [2]
    郭晓菲, 郭林峰, 马念杰, 等. 巷道围岩蝶形破坏理论的适用性分析[J]. 中国矿业大学学报, 2020, 49(4): 646–653, 660. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD202004004.htm

    GUO Xiao-fei, GUO Lin-feng, MA Nian-jie, et al. Applicability analysis of the roadway butterfly failure theory[J]. Journal of China University of Mining & Technology, 2020, 49(4): 646–653, 660. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD202004004.htm
    [3]
    ZHANG L S, YAN X Z, YANG X J, et al. An elastoplastic model of collapse pressure for deep coal seam drilling based on Hoek-Brown criterion related to drilling fluid loss to reservoir[J]. Journal of Petroleum Science and Engineering, 2015, 134: 205–213. doi: 10.1016/j.petrol.2015.07.003
    [4]
    ZUO J P, LIU H Y, LIU D J, et al. Study on large deformation mechanism and concrete-filled steel tubular support technology for ventilation shaft roadway[J]. Bulletin of Engineering Geology and the Environment, 2021, 80(8): 6245–6262. doi: 10.1007/s10064-021-02331-1
    [5]
    李涛, 赵光明, 孟祥瑞, 等. 考虑中间主应力的非均匀应力场圆形巷道围岩塑性区分析[J]. 煤炭工程, 2014, 46(3): 68–71. https://www.cnki.com.cn/Article/CJFDTOTAL-MKSJ201403023.htm

    LI Tao, ZHAO Guang-ming, MENG Xiang-rui, et al. Analysis on plastic zone in surround rock of mine circular type gateway in non-uniform stress field with centre main stress considered[J]. Coal Engineering, 2014, 46(3): 68–71. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MKSJ201403023.htm
    [6]
    陈登国, 高召宁, 李顺顺. 非均匀应力场下圆形隧洞围岩弹性应力分析[J]. 科学技术与工程, 2020, 20(21): 8791–8797. doi: 10.3969/j.issn.1671-1815.2020.21.054

    CHEN Deng-guo, GAO Zhao-ning, LI Shun-shun. Analysis of elastic surrounding rock stress of circular tunnel under non-uniform stress field[J]. Science Technology and Engineering, 2020, 20(21): 8791–8797. (in Chinese) doi: 10.3969/j.issn.1671-1815.2020.21.054
    [7]
    陈立伟, 彭建兵, 范文, 等. 基于统一强度理论的非均匀应力场圆形巷道围岩塑性区分析[J]. 煤炭学报, 2007, 32(1): 20–23. doi: 10.3321/j.issn:0253-9993.2007.01.004

    CHEN Li-wei, PENG Jian-bing, FAN Wen, et al. Analysis of surrounding rock mass plastic zone of round tunnel under non-uniform stress field based on the unified strength theory[J]. Journal of China Coal Society, 2007, 32(1): 20–23. (in Chinese) doi: 10.3321/j.issn:0253-9993.2007.01.004
    [8]
    崔芳, 王利, 王云飞. 非轴对称荷载下圆形隧道弹性围岩应力解析解[J]. 地下空间与工程学报, 2017, 13(3): 637–642. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201703011.htm

    CUI Fang, WANG Li, WANG Yun-fei. Stress analytic solution for elastic surrounding rock mass of circular tunnels subjected to non axisymmetric loads[J]. Chinese Journal of Underground Space and Engineering, 2017, 13(3): 637–642. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201703011.htm
    [9]
    ZOU Z S, YANG J, WANG Z M, et al. The plastic zone of tunnel surrounding rock under unequal stress in two directions based on the unified strength theory[J]. Mathematical Problems in Engineering, 2021(1): 1–11.
    [10]
    DETOURNAY E. An approximate statical solution of the elastoplastic interface for the problem of Galin with a cohesive-frictional material[J]. International Journal of Solids and Structures, 1986, 22(12): 1435–1454.
    [11]
    吕爱钟, 张晓莉, 王少杰. 两向不等压圆形隧洞弹塑性解析分析[J]. 岩石力学与工程学报, 2018, 37(1): 14–22. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201801002.htm

    LU Ai-zhong, ZHANG Xiao-li, WANG Shao-jie. Analytic method for elasto-plastic analysis of circular tunnels under non-axisymmetric stresses[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(1): 14–22. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201801002.htm
    [12]
    XU M F, WU S C, GAO Y T, et al. Analytical elastic stress solution and plastic zone estimation for a pressure-relief circular tunnel using complex variable methods[J]. Tunnelling and Underground Space Technology, 2019, 84(1): 381–398.
    [13]
    魏悦广. 两向不等压作用下圆形巷道弹塑性分析摄动解[J]. 岩土工程学报, 1990, 12(4): 11–20. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC199004001.htm

    WEI Yue-guang. Perturbation solution for elasto-plastic analysis of circular tunnel under unequal compression in two directions[J]. Chinese Journal of Geotechnical Engineering, 1990, 12(4): 11–20. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC199004001.htm
    [14]
    TANG B, CHENG H, TANG Y Z, et al. Excavation damaged zone depths prediction for TBM-excavated roadways in deep collieries[J]. Environmental Earth Sciences, 2018, 77(5): 1–14.
    [15]
    MOGI K. Experimental Rock Mechanics[M]. Balkema, Taylor & Francis Group, 2007.
    [16]
    张常光, 赵均海, 杜文超. 岩石中间主应力效应及强度理论研究进展[J]. 建筑科学与工程学报, 2014, 31(2): 6–19. https://www.cnki.com.cn/Article/CJFDTOTAL-XBJG201402003.htm

    ZHANG Chang-guang, ZHAO Jun-hai, DU Wen-chao. Advances in rock for intermediate principal stress effect and strength theory[J]. Journal of Architecture and Civil Engineering, 2014, 31(2): 6–19. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XBJG201402003.htm
    [17]
    FENG X T, KONG R, ZHANG X W, et al. Experimental study of failure differences in hard rock under true triaxial compression[J]. Rock Mechanics and Rock Engineering, 2019, 52(7): 2109–2122.
    [18]
    俞茂宏. 岩土类材料的统一强度理论及其应用[J]. 岩土工程学报, 1994, 16(2): 95–97. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC402.000.htm

    YU Mao-hong. Unified strength theory for geomaterials and its applications[J]. Chinese Journal of Geotechnical Engineering, 1994, 16(2): 95–97. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC402.000.htm
    [19]
    XU S Q, YU M H. The effect of the intermediate principal stress on the ground response of circular openings in rock mass[J]. Rock Mechanics and Rock Engineering, 2006, 39(2): 169–181.
    [20]
    曾开华, 鞠海燕, 盛国君, 等. 巷道围岩弹塑性解析解及工程应用[J]. 煤炭学报, 2011, 36(5): 752–755. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201105009.htm

    ZENG Kai-hua, JU Hai-yan, SHENG Guo-jun, et al. Elastic-plastic analytical solutions for surrounding rocks of tunnels and its engineering applications[J]. Journal of China Coal Society, 2011, 36(5): 752–755. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201105009.htm
    [21]
    张常光, 范文, 赵均海. 深埋圆形巷道围岩塑性区位移及特征曲线新解和参数分析[J]. 岩土力学, 2016, 37(1): 12–24, 32. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201601002.htm

    ZHANG Chang-guang, FAN Wen, ZHAO Jun-hai. New solutions of rock plastic displacement and ground response curve for a deep circular tunnel and parametric analysis[J]. Rock and Soil Mechanics, 2016, 37(1): 12–24, 32. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201601002.htm
    [22]
    徐芝纶. 弹性力学[M]. 北京: 高等教育出版社, 2006.

    XU Zhi-lun. Elastic Mechanics[M]. Beijing: Higher Education Press, 2006. (in Chinese)
  • Other Related Supplements

  • Cited by

    Periodical cited type(8)

    1. 胡静静,余丁浩,李钢,王睿,张晗,苏璞. 考虑土-结相互作用的大型结构高效地震分析方法. 工程力学. 2024(03): 135-149 .
    2. 邓铭江,孙奔博,许佳. 高沥青混凝土心墙坝抗震安全评估研究进展. 水力发电学报. 2023(03): 82-91 .
    3. 刘京茂,邵伟峰,邹德高,屈永倩,迟福东. 基于弹塑性模型参数反演的高土石坝地震响应预测. 人民长江. 2023(09): 184-190+205 .
    4. 张亚国,肖书雄,杨赟,李同录. 一种状态变量相关的非饱和接触面弹塑性模型及验证. 岩土工程学报. 2023(10): 2081-2090 . 本站查看
    5. 左双英,付丽,陈世万,吴道勇. 基于Interface改进算法的水工隧洞衬砌受力分析. 华中科技大学学报(自然科学版). 2022(01): 99-104 .
    6. 王雅甜,杨春山,黄福杰. 紧邻既有结构的灌注桩施工力学行为研究. 南昌工程学院学报. 2022(03): 41-46 .
    7. 邹德高,彭俊,李俊超,陈涛,刘京茂,王建全,陈楷. 沥青混凝土面板堆石坝强震变形模式和极限抗震能力分析. 水电与抽水蓄能. 2022(06): 15-20 .
    8. 邹德高,刘京茂,汪玉冰,李俊超,李多,陈涛,王锋. 西部某水电站覆盖层地基离心机动力试验数值模拟. 水电与抽水蓄能. 2021(01): 23-27 .

    Other cited types(12)

Catalog

    Article views (164) PDF downloads (22) Cited by(20)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return