• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
SHEN Zhi-fu, ZHANG Xu-yin, GAO Feng, WANG Zhi-hua, GAO Hong-mei. Discrete element method for clay considering irregular planar shape of clay platelets[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(9): 1654-1662. DOI: 10.11779/CJGE202209010
Citation: SHEN Zhi-fu, ZHANG Xu-yin, GAO Feng, WANG Zhi-hua, GAO Hong-mei. Discrete element method for clay considering irregular planar shape of clay platelets[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(9): 1654-1662. DOI: 10.11779/CJGE202209010

Discrete element method for clay considering irregular planar shape of clay platelets

More Information
  • Received Date: July 21, 2021
  • Available Online: September 22, 2022
  • The discrete element method (DEM) is a powerful tool to study the microscopic mechanics behind the complicated macroscopic mechanical behaviors of clay. In the current DEM simulations of clay, the planar shape of clay platelets is commonly assumed to be regular, such as rectangle and ellipse, which are quite different from the true planar shapes of clay. There is no research report about the effects of shape of clay platelets on the mechanical behaviors of clay. In this study, the methods to calculate the Van der Waals force and the double-layer repulsive force between two convex-shaped clay platelets are proposed, and an inter-clay platelet contact model is developed. Then, the effects of relative alignment of two clay platelets on the interactions are studied, and the approaches to significantly improve the simulation efficiency are summarized accordingly. The DEM simulation for clay based on irregular convex planar shape of clay platelets is thus developed. The simulated results indicate that the developed DEM simulation scheme can well reproduce the mechanical behaviors of clay in oedometer tests. The planar shape and thickness of clay platelets have significant effects on the one-dimensional compressive curves and the evolution of platelet arrangement fabric. It is necessary to incorporate the irregular planar shape of clay platelets in future DEM simulation of clay.
  • [1]
    YONG R N. Overview of modeling of clay microstructure and interactions for prediction of waste isolation barrier performance[J]. Engineering Geology, 1999, 54(1/2): 83–91.
    [2]
    唐朝生, 施斌, 王宝军. 基于SEM土体微观结构研究中的影响因素分析[J]. 岩土工程学报, 2008, 30(4): 560–565. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200804018.htm

    TANG Chao-sheng, SHI Bin, WANG Bao-jun. Factors affecting analysis of soil microstructure using SEM[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(4): 560–565. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200804018.htm
    [3]
    尹小涛. 基于微结构量化分析的软土各向异性特征研究[J]. 地下空间与工程学报, 2015, 11(增刊2): 486–490. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE2015S2021.htm

    YIN Xiao-tao. Study on anisotropy of soft soil based on quantitative analysis of microstructure[J]. Chinese Journal of Underground Space and Engineering, 2015, 11(S2): 486–490. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE2015S2021.htm
    [4]
    HICHER P Y, WAHYUDI H, TESSIER D. Microstructural analysis of inherent and induced anisotropy in clay[J]. Mechanics of Cohesive-Frictional Materials, 2000, 5(5): 341–371. doi: 10.1002/1099-1484(200007)5:5<341::AID-CFM99>3.0.CO;2-C
    [5]
    WANG Y H, SIU W K. Structure characteristics and mechanical properties of kaolinite soils: Ⅱ effects of structure on mechanical properties[J]. Canadian Geotechnical Journal, 2006, 43(6): 601–617. doi: 10.1139/t06-027
    [6]
    刘治清, 宋晶, 杨玉双, 等. 饱和细粒土固结过程的三维孔隙演化特征[J]. 工程地质学报, 2016, 24(5): 931–940. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201605024.htm

    LIU Zhi-qing, SONG Jing, YANG Yu-shuang, et al. Three-dimensional pores evolution characteristics during consolidation process of saturated fine-grained soil[J]. Journal of Engineering Geology, 2016, 24(5): 931–940. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201605024.htm
    [7]
    ANANDARAJAH A. Discrete element modeling of leaching-induced apparent overconsolidation in kaolinite[J]. Soils and Foundations, 2003, 43(6): 1–12. doi: 10.3208/sandf.43.6_1
    [8]
    BAYESTEH H, MIRGHASEMI A A. Numerical simulation of pore fluid characteristic effect on the volume change behavior of montmorillonite clays[J]. Computers and Geotechnics, 2013, 48: 146–155. doi: 10.1016/j.compgeo.2012.10.007
    [9]
    商翔宇, 鲁巨明, 杨晨, 等. 考虑黏土特性的离散元程序开发[J]. 防灾减灾工程学报, 2016, 36(4): 657–663. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201604023.htm

    SHANG Xiang-yu, LU Ju-ming, YANG Chen, et al. Development of discrete element code considering the characteristics of clay[J]. Journal of Disaster Prevention and Mitigation Engineering, 2016, 36(4): 657–663. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201604023.htm
    [10]
    YAO M, ANANDARAJAH A. Three-dimensional discrete element method of analysis of clays[J]. Journal of Engineering Mechanics, 2003, 129(6): 585–596. doi: 10.1061/(ASCE)0733-9399(2003)129:6(585)
    [11]
    KATTI D R, MATAR M I, KATTI K S, et al. Multiscale modeling of swelling clays: a computational and experimental approach[J]. KSCE Journal of Civil Engineering, 2009, 13(4): 243–255. doi: 10.1007/s12205-009-0243-0
    [12]
    EBRAHIMI D, WHITTLE A J, PELLENQ R J M. Mesoscale properties of clay aggregates from potential of mean force representation of interactions between nanoplatelets[J]. The Journal of Chemical Physics, 2014, 140(15): 154309. doi: 10.1063/1.4870932
    [13]
    SJOBLOM K J. Coarse-grained molecular dynamics approach to simulating clay behavior[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 142(2): 06015013. doi: 10.1061/(ASCE)GT.1943-5606.0001394
    [14]
    GUO Y, YU X. A holistic computational model for prediction of clay suspension structure[J]. International Journal of Sediment Research, 2019, 34(4): 345–354. doi: 10.1016/j.ijsrc.2018.12.002
    [15]
    JARADAT K A, ABDELAZIZ S L. On the use of discrete element method for multi-scale assessment of clay behavior[J]. Computers and Geotechnics, 2019, 112: 329–341. doi: 10.1016/j.compgeo.2019.05.001
    [16]
    LU N, ANDERSON M T, LIKOS W J, et al. A discrete element model for kaolinite aggregate formation during sedimentation[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2008, 32(8): 965–980. doi: 10.1002/nag.656
    [17]
    JUN S M, JIANG M J, ZHOU C B. Numerical simulation of desiccation cracking in a thin clay layer using 3D discrete element modeling[J]. Computers and Geotechnics, 2014, 56: 168–180. doi: 10.1016/j.compgeo.2013.12.003
    [18]
    LONDON F. Zur theorie und systematik der molekularkräfte[J]. Zeitschrift Für Physik, 1930, 63(3/4): 245–279. http://www.mendeley.com/research/zur-theorie-und-systematik-der-molekularkrfte/
    [19]
    LONDON F. On the theory and systematics of the molecular forces[J]. Journal of Physics, 1930, 63(3/4): 245–279. (in German) doi: 10.1142/9789812795762_0023
    [20]
    ITASCA CONSULTING GROUP, INC. Documentation of Particle Flow Code 3D V6.0[M]. Minneapolis, 2019.
    [21]
    蒋明镜. 现代土力学研究的新视野: 宏微观土力学[J]. 岩土工程学报, 2019, 41(2): 195–254. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201902002.htm

    JIANG Ming-jing. New paradigm for modern soil mechanics: geomechanics from micro to macro[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(2): 195–254. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201902002.htm

Catalog

    Article views (250) PDF downloads (62) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return