Citation: | WU Ai-qing, WU Qing-hua. Evolution mechanism of dike risks, quick detection of hidden dangers, and technical equipments of emergency rescues[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(7): 1310-1328. DOI: 10.11779/CJGE202207010 |
[1] |
中华人民共和国水利部、中华人民共和国国家统计局. 第一次全国水利普查公报[M]. 北京: 中国水利水电出版社, 2013.
Ministry of Water Resources, P. R. China, National Bureau of Statistics, P. R. China. Bulletin of First National Census for Water[M]. Beijing: China Water Power Press, 2013. (in Chinese)
|
[2] |
中华人民共和国水利部. 2019年全国水利发展统计公报[M]. 北京: 中国水利水电出版社, 2020.
Ministry of Water Resources, P. R. China. 2019 Statistic Bulletin on China Water Activities[M]. Beijing: China Water Power Press, 2020. (in Chinese)
|
[3] |
包承纲, 吴昌瑜, 丁金华. 中国堤防建设技术综述[J]. 人民长江, 1999, 30(10): 15–16, 50. doi: 10.3969/j.issn.1001-4179.1999.10.006
BAO Cheng-gang, WU Chang-yu, DING Jin-hua. Dike construction technology and development in China[J]. Yangtze River, 1999, 30(10): 15–16, 50. (in Chinese) doi: 10.3969/j.issn.1001-4179.1999.10.006
|
[4] |
邬爱清, 周华敏, 吴庆华. 欧美国家堤防防洪若干特点及与我国的比较[J]. 长江科学院院报, 2019, 36(10): 11–18. doi: 10.11988/ckyyb.20191016
WU Ai-qing, ZHOU Hua-min, WU Qing-hua. Levees in Europe and United States: characteristics and comparison with China[J]. Journal of Yangtze River Scientific Research Institute, 2019, 36(10): 11–18. (in Chinese) doi: 10.11988/ckyyb.20191016
|
[5] |
张家发, 吴昌瑜, 李胜常, 等. 堤防加固工程中防渗墙的防渗效果及应用条件研究[J]. 长江科学院院报, 2001, 18(5): 56–60. doi: 10.3969/j.issn.1001-5485.2001.05.014
ZHANG Jia-fa, WU Chang-yu, LI Sheng-chang, et al. Seepage control efficiency and application conditions of cut-off wall used for dyke reinforcement[J]. Journal of Yangtze River Scientific Research Institute, 2001, 18(5): 56–60. (in Chinese) doi: 10.3969/j.issn.1001-5485.2001.05.014
|
[6] |
邬爱清, 吴志广, 尹健民, 等. 钻孔压浆成墙法用于鄱阳湖区圩堤防渗墙施工[J]. 人民长江, 2001, 32(5): 15–16, 36. doi: 10.3969/j.issn.1001-4179.2001.05.006
WU Ai-qing, WU Zhi-guang, YIN Jian-min, et al. Construction of the cut off wall with drilling grouting method applied in the dike of Poyang lake region[J]. Yangtze River, 2001, 32(5): 15–16, 36. (in Chinese) doi: 10.3969/j.issn.1001-4179.2001.05.006
|
[7] |
张家发, 吴志广, 许季军, 等. 安庆江堤现有减压井运行效果初步分析[J]. 长江科学院院报, 2000, 17(4): 38–40, 44. doi: 10.3969/j.issn.1001-5485.2000.04.011
ZHANG Jia-fa, WU Zhi-guang, XU Ji-jun, et al. Analyses on effectiveness of relief wells for Anqing Dyke[J]. Journal of Yangtze River Scientific Research Institute, 2000, 17(4): 38–40, 44. (in Chinese) doi: 10.3969/j.issn.1001-5485.2000.04.011
|
[8] |
杨光煦. 九江长江江堤堵口实录及经验[J]. 人民长江, 1998, 29(11): 4–7, 49.
YANG Cuang-xu. Emergency closure of dike breach at Jiujiang reach of Yangtze River[J]. Yangtze River, 1998, 29(11): 4–7, 49. (in Chinese)
|
[9] |
张利荣, 严匡柠, 张海英. 唱凯堤决口封堵抢险方案及关键技术措施[J]. 施工技术, 2014, 43(12): 26–28, 83.
ZHANG Li-rong, YAN Kuang-ning, ZHANG Hai-ying. Emergency rescue scheme and key technology measures of Changkai dike crevasse sealing[J]. Construction Technology, 2014, 43(12): 26–28, 83. (in Chinese)
|
[10] |
邬爱清. 国家重点研发计划项目"堤防险情演化机制与隐患快速探测及应急抢险技术装备"综合绩效自评价报告[R]. 北京: 中国21世纪议程管理中心, 2022.
WU Ai-qing. Self-Evaluation Report of the National Key R & D Program of China of "Dike Risks Evolution Mechanism, Hidden Danger Rapid Detection and Emergency Rescue Technology Equipment"[R]. Beijing: The Administrative Center for China's Agenda 21, 2022. (in Chinese)
|
[11] |
任增平, 潘光宜. 淮北大堤饶荆段险情类型及成因分析[J]. 水利规划与设计, 2019(9): 41–44, 156. doi: 10.3969/j.issn.1672-2469.2019.09.012
REN Zeng-ping, PAN Guang-yi. Analysis on type and formation cause of dangerous conditions in Raojing section of Huaibei Dam[J]. Water Resources Planning and Design, 2019(9): 41–44, 156. (in Chinese) doi: 10.3969/j.issn.1672-2469.2019.09.012
|
[12] |
任增平, 金习武, 李坤. 淮北大堤涡下段险情类型分析及成因研究[J]. 水利水电工程设计, 2020, 39(3): 27–30. doi: 10.3969/j.issn.1007-6980.2020.03.009
REN Zeng-ping, JIN Xi-wu, LI Kun. Type analysis and cause study of risks at lower part of Wo river of Huaibei levee[J]. Design of Water Resources & Hydroelectric Engineering, 2020, 39(3): 27–30. (in Chinese) doi: 10.3969/j.issn.1007-6980.2020.03.009
|
[13] |
司富安, 李坤, 段世委, 等. 第二松花江堤防险情类型及成因分析[J]. 水利规划与设计, 2020(11): 117–119.
SI Fu-an, LI Kun, DUAN Shi-wei, et al. Analysis on the types and causes of danger prevention of the second Songhua River dyke[J]. Water Resources Planning and Design, 2020(11): 117–119. (in Chinese)
|
[14] |
海震, 李会中, 梁梁. 枞阳江堤险情工程地质分析与评价[J]. 人民长江, 2019, 50(增刊2): 76–79.
HAI Zhen, LI Hui-zhong, LIANG Liang. Analysis and assessment on engineering geology of dangerous situation in Zongyang Yangtze River Embankment[J]. Yangtze River, 2019, 50(S2): 76–79. (in Chinese)
|
[15] |
赵鑫, 马贵生, 万永良, 等. 堤防工程堤基渗流安全评价方法[J]. 长江科学院院报, 2019, 36(10): 79–84. doi: 10.11988/ckyyb.20190880
ZHAO Xin, MA Gui-sheng, WAN Yong-liang, et al. A safety assessment method for seepage flow in dyke foundation[J]. Journal of Yangtze River Scientific Research Institute, 2019, 36(10): 79–84. (in Chinese) doi: 10.11988/ckyyb.20190880
|
[16] |
倪小东, 寇恒绮, 左翔宇, 等. 基于透明土技术与颗粒流方法联合开展管涌细观机理研究[J]. 水利学报, 2021, 52(12): 1482–1497.
NI Xiao-dong, KOU Heng-qi, ZUO Xiang-yu, et al. Research on meso mechanism of piping based on transparent soil technology and particle flow method[J]. Journal of Hydraulic Engineering, 2021, 52(12): 1482–1497. (in Chinese)
|
[17] |
谷敬云, 罗玉龙, 张兴杰, 等. 基于平面激光诱导荧光的潜蚀可视化试验装置及其初步应用[J]. 岩石力学与工程学报, 2021, 40(6): 1287–1296.
GU Jing-yun, LUO Yu-long, ZHANG Xing-jie, et al. A suffusion visualization apparatus based on planar laser induced fluorescence and the preliminary application[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(6): 1287–1296. (in Chinese)
|
[18] |
樊茹玉, 罗玉龙, 张兴杰, 等. 基于DEM-CFD耦合的潜蚀细观数值模型研究[J]. 水电能源科学, 2021, 39(2): 64–68.
FAN Ru-yu, LUO Yu-long, ZHANG Xing-jie, et al. Study on suffusion mesoscopic numerical model based on DEM-CFD method[J]. Water Resources and Power, 2021, 39(2): 64–68. (in Chinese)
|
[19] |
LUO Y L, LUO B, XIAO M. Effect of deviator stress on the initiation of suffusion[J]. Acta Geotechnica, 2020, 15(6): 1607–1617. doi: 10.1007/s11440-019-00859-x
|
[20] |
刘洪辰, 吴庆华, 苏怀智, 等. 覆盖层及其与砂层接触面特性对堤基管涌影响试验研究[J]. 水利与建筑工程学报, 2020, 18(4): 165–170. doi: 10.3969/j.issn.1672-1144.2020.04.028
LIU Hong-chen, WU Qing-hua, SU Huai-zhi, et al. Experimental study on piping considering cover layer and its contact surface with sand layer characteristics[J]. Journal of Water Resources and Architectural Engineering, 2020, 18(4): 165–170. (in Chinese) doi: 10.3969/j.issn.1672-1144.2020.04.028
|
[21] |
崔皓东, 陆齐, 陈劲松, 等. 长江干堤典型管涌险情成因分析及对策研究[J]. 水利水电快报, 2021, 42(1): 54–58.
CUI Hao-dong, LU Qi, CHEN Jin-song, et al. Causes analysis of typical piping dangers of main levees of Yangtze River and countermeasures[J]. Express Water Resources & Hydropower Information, 2021, 42(1): 54–58. (in Chinese)
|
[22] |
岳红艳, 吕庆标, 朱勇辉, 等. 河道岸坡水位涨落变化对崩岸影响试验研究[J]. 人民长江, 2021, 52(增刊2): 15–20.
YUE Hong-yan, LÜ Qing-biao, ZHU Yong-hui, et al. Experimental study on influence of river bank slope water level fluctuation on bank collapse[J]. Yangtze River, 2021, 52(S2): 15–20. (in Chinese)
|
[23] |
吕庆标, 岳红艳, 朱勇辉, 等. 水位变化速率对河道崩岸的影响[J]. 长江科学院院报, 2021(5): 11–16.
LÜ Qing-biao, YUE Hong-yan, ZHU Yong-hui, et al. Influence of water level change rate on riverbank collapse[J]. Journal of Yangtze River Scientific Research Institute, 2021(5): 11–16. (in Chinese)
|
[24] |
孙东亚, 姚秋玲, 赵雪莹. 堤坝涵管接触冲刷破坏模式分析[J]. 中国水利水电科学研究院学报, 2021, 19(2): 276–280.
SUN Dong-ya, YAO Qiu-ling, ZHAO Xue-ying. Analysis of failure modes of conduits through embankment dams due to contact erosion[J]. Journal of China Institute of Water Resources and Hydropower Research, 2021, 19(2): 276–280. (in Chinese)
|
[25] |
陈启刚, 张大伟, 王忠祥, 等. 堤防溃口水流特性与封堵技术研究进展[J]. 中国防汛抗旱, 2021, 31(8): 1–6.
CHEN Qi-gang, ZHANG Da-wei, WANG Zhong-xiang, et al. Progress in flow characteristics and closure technology of dike breaches[J]. China Flood & Drought Management, 2021, 31(8): 1–6. (in Chinese)
|
[26] |
丁家怡, 蔡伟, 周建方. 基于随机力学理论的堤防安全分析方法综述[J]. 长江科学院院报, 2019, 36(10): 66–72, 78. doi: 10.11988/ckyyb.20190883
DING Jia-yi, CAI Wei, ZHOU Jian-fang. Safety analysis methods for levees based on stochastic mechanics: a review[J]. Journal of Yangtze River Scientific Research Institute, 2019, 36(10): 66–72, 78. (in Chinese) doi: 10.11988/ckyyb.20190883
|
[27] |
王小兵, 夏晓舟, 章青. 基于正交试验和神经网络的堤防边坡抗滑稳定可靠度研究[J]. 长江科学院院报, 2019, 36(10): 89–93. doi: 10.11988/ckyyb.20190868
WANG Xiao-bing, XIA Xiao-zhou, ZHANG Qing. Reliability analysis on anti-sliding stability of levee slope based on orthogonal test and neural network[J]. Journal of Yangtze River Scientific Research Institute, 2019, 36(10): 89–93. (in Chinese) doi: 10.11988/ckyyb.20190868
|
[28] |
DING J Y, ZHOU J F, CAI W, et al. A modified hybrid algorithm based on black hole and differential evolution algorithms to search for the critical probabilistic slip surface of slopes[J]. Computers and Geotechnics, 2021, 129: 103902. doi: 10.1016/j.compgeo.2020.103902
|
[29] |
李少龙, 崔皓东. 渗透系数空间变异性对堤基渗透稳定影响的数值模拟[J]. 长江科学院院报, 2019, 36(10): 49–52, 58. doi: 10.11988/ckyyb.20190769
LI Shao-long, CUI Hao-dong. Numerical simulation on effect of spatial variability of soil permeability on seepage stability of levee foundation[J]. Journal of Yangtze River Scientific Research Institute, 2019, 36(10): 49–52, 58. (in Chinese) doi: 10.11988/ckyyb.20190769
|
[30] |
刘高峰, 龚艳冰, 王慧敏, 等. 国外堤防风险管理现状及对我国的启示[J]. 长江科学院院报, 2019, 36(10): 53–58. doi: 10.11988/ckyyb.20190997
LIU Gao-feng, GONG Yan-bing, WANG Hui-min, et al. Current situation of levee risk management abroad and its implications to China[J]. Journal of Yangtze River Scientific Research Institute, 2019, 36(10): 53–58. (in Chinese) doi: 10.11988/ckyyb.20190997
|
[31] |
龚艳冰, 杨舒馨, 戴靓靓, 等. 基于数据场K-means聚类的洪涝灾害突发事件分级方法[J]. 统计与决策, 2018, 34(20): 47–49.
GONG Yan-bing, YANG Shu-xin, DAI liang-liang, et al. Stage division of flood disaster based on data field K-means clustering method[J]. Statistics & Decision, 2018, 34(20): 47–49. (in Chinese)
|
[32] |
刘高峰, 龚艳冰, 黄晶. 基于流域系统视角的城市洪水风险综合管理弹性策略研究[J]. 河海大学学报(哲学社会科学版), 2020, 22(3): 66–73, 107.
LIU Gao-feng, GONG Yan-bing, HUANG Jing. Research on resilient strategies of urban flood risk comprehensive management from the perspective of river basin system[J]. Journal of Hohai University (Philosophy and Social Sciences), 2020, 22(3): 66–73, 107. (in Chinese)
|
[33] |
CAO W W, YANG Y, HUANG J, et al. Influential factors affecting protective coping behaviors of flood disaster: a case study in Shenzhen, China[J]. International Journal of Environmental Research and Public Health, 2020, 17(16): 5945. doi: 10.3390/ijerph17165945
|
[34] |
张健, 潘斌, 陈文龙, 等. 基于雷达卫星时序分析技术的荆江沿岸堤防形变研究[J]. 长江科学院院报, 2019, 36(10): 23–27. doi: 10.11988/ckyyb.20190871
ZHANG Jian, PAN Bin, CHEN Wen-long, et al. Detection of deformation along Jingjiang segment of Yangtze River dyke based on radar satellite time series analysis technique[J]. Journal of Yangtze River Scientific Research Institute, 2019, 36(10): 23–27. (in Chinese) doi: 10.11988/ckyyb.20190871
|
[35] |
沈定涛, 钱天陆, 夏煜, 等. 机载LiDAR数据提取堤防工程特征信息圆环探测法[J]. 测绘学报, 2021, 50(2): 203–214.
SHEN Ding-tao, QIAN Tian-lu, XIA Yu, et al. A ring detection method for levee features extraction based on airborne LiDAR data[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(2): 203–214. (in Chinese)
|
[36] |
冯国正, 刘世振, 李艳, 等. 基于GNSS/INS紧耦合的水陆地形三维一体化崩岸监测技术[J]. 长江科学院院报, 2019, 36(10): 94–99. doi: 10.11988/ckyyb.20190869
FENG Guo-zheng, LIU Shi-zhen, LI Yan, et al. A bank collapse monitoring technology integrating 3D land and water based on GNSS/INS tight coupling[J]. Journal of Yangtze River Scientific Research Institute, 2019, 36(10): 94–99. (in Chinese) doi: 10.11988/ckyyb.20190869
|
[37] |
马耀昌, 刘世振, 樊小涛, 等. 基于崩岸监测的多波束系统参数设计[J]. 长江科学院院报, 2019, 36(10): 100–103. doi: 10.11988/ckyyb.20190903
MA Yao-chang, LIU Shi-zhen, FAN Xiao-tao, et al. Design of detection parameters of multi-beam sounding system for bank collapse survey[J]. Journal of Yangtze River Scientific Research Institute, 2019, 36(10): 100–103. (in Chinese) doi: 10.11988/ckyyb.20190903
|
[38] |
刘世振, 樊小涛, 冯国正, 等. 现代高时空分辨率崩岸应急监测技术研究进展与展望[J]. 长江科学院院报, 2019, 36(10): 85–88, 93. doi: 10.11988/ckyyb.20190886
LIU Shi-zhen, FAN Xiao-tao, FENG Guo-zheng, et al. Modern emergency monitoring technology for bank collapse with high spatio-temporal resolution: review and prospect[J]. Journal of Yangtze River Scientific Research Institute, 2019, 36(10): 85–88, 93. (in Chinese) doi: 10.11988/ckyyb.20190886
|
[39] |
罗登昌, 韩旭, 于起超, 等. 堤防工程数据标准化研究[J]. 长江科学院院报, 2019, 36(10): 34–38. doi: 10.11988/ckyyb.20190877
LUO Deng-chang, HAN Xu, YU Qi-chao, et al. Standardization of dyke engineering data[J]. Journal of Yangtze River Scientific Research Institute, 2019, 36(10): 34–38. (in Chinese) doi: 10.11988/ckyyb.20190877
|
[40] |
蒋园, 韩旭, 马丹璇, 等. 相似重复数据检测的数据清洗算法优化[J]. 计算机技术与发展, 2019, 29(10): 79–82. doi: 10.3969/j.issn.1673-629X.2019.10.017
JIANG Yuan, HAN Xu, MA Dan-xuan, et al. Optimization of data cleaning algorithm for similar duplicate data detection[J]. Computer Technology and Development, 2019, 29(10): 79–82. (in Chinese) doi: 10.3969/j.issn.1673-629X.2019.10.017
|
[41] |
于起超, 韩旭, 马丹璇, 等. 流式大数据数据清洗系统设计与实现[J]. 计算机时代, 2021(9): 1–5.
YU Qi-chao, HAN Xu, MA Dan-xuan, et al. Design and implementation of streaming big data ETL System[J]. Computer Era, 2021(9): 1–5. (in Chinese)
|
[42] |
宁丹麦, 罗玉龙, 詹美礼, 等. 堤防管涌险情主要影响因素的敏感性分析[J]. 长江科学院院报, 2019, 36(10): 45–48, 58.
NING Dan-mai, LUO Yu-long, ZHAN Mei-li, et al. Sensitivity analysis on weights of main influence factors of piping failure of dyke[J]. Journal of Yangtze River Scientific Research Institute, 2019, 36(10): 45–48, 58. (in Chinese)
|
[43] |
冯迪, 王媛, 高山, 等. 分淮入沂整治工程典型堤段垂直防渗体防渗效果分析与评价[J]. 长江科学院院报, 2019, 36(10): 180–184.
FENG Di, WANG Yuan, GAO Shan, et al. Effectiveness of vertical anti-seepage body in typical levee segment of Huaihe River drainage project: analysis and evaluation[J]. Journal of Yangtze River Scientific Research Institute, 2019, 36(10): 180–184. (in Chinese)
|
[44] |
饶小康, 马瑞, 张力, 等. 基于GIS+BIM+IoT数字孪生的堤防工程安全管理平台研究[J]. 中国农村水利水电, 2022(1): 1–7.
RAO Xiao-kang, MA Rui, ZHANG Li, et al. Study and design of dike engineering safety management system based on GIS+BIM+IoT digital twin[J]. China Rural Water and Hydropower, 2022(1): 1–7. (in Chinese)
|
[45] |
张力, 马瑞, 徐志敏. 堤防工程三维可视化管理技术[M]. 武汉: 长江出版社, 2021.
ZHANG Li, MA Rui, XU Zhi-min. 3D Visualization Management Technology of Dike Engineering[M]. Wuhan: Yangtze River Press, 2021. (in Chinese)
|
[46] |
李文忠, 肖国强, 孙卫民, 等. 长江堤防土电阻率测试及其与含水率和密实度的相关性研究[J]. 长江科学院院报, 2019, 36(10): 131–134.
LI Wen-zhong, XIAO Guo-qiang, SUN Wei-min, et al. Measurement of water content and its correlation with compactness and resistivity of Yangtze River embankment soil[J]. Journal of Yangtze River Scientific Research Institute, 2019, 36(10): 131–134. (in Chinese)
|
[47] |
孙大利, 李貅, 齐彦福, 等. 基于非结构网格三维有限元堤坝隐患时移特征分析[J]. 物探与化探, 2019, 43(4): 804–814. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201904015.htm
SUN Da-li, LI Xiu, QI Yan-fu, et al. Time-lapse characteristics analysis of hidden dangers of three-dimensional finite element levees based on unstructured grids[J]. Geophysical and Geochemical Exploration, 2019, 43(4): 804–814. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201904015.htm
|
[48] |
孙卫民, 孙大利, 李文忠, 等. 基于时移高密度电法的堤防隐患探测技术[J]. 长江科学院院报, 2019, 36(10): 157–160, 184. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201910037.htm
SUN Wei-min, SUN Da-li, LI Wen-zhong, et al. Technology of detecting dyke's hidden danger using time-lapse high-density resistivity method[J]. Journal of Yangtze River Scientific Research Institute, 2019, 36(10): 157–160, 184. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201910037.htm
|
[49] |
EDWARDS R N. The magnetometric resistivity method and its application to the mapping of a fault[J]. Canadian Journal of Earth Sciences, 1974, 11(8): 1136–1156.
|
[50] |
KOFOED V O, JESSOP M L, WALLACE M J, et al. Unique applications of MMR to track preferential groundwater flow paths in dams, mines, environmental sites, and leach fields[J]. The Leading Edge, 2011, 30(2): 192–204.
|
[51] |
周黎明, 陈志学, 周华敏, 等. 堤防隐患瞬变电磁三维正演模拟及分析[J]. 长江科学院院报, 2019, 36(10): 146–150, 156. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201910035.htm
ZHOU Li-ming, CHEN Zhi-xue, ZHOU Hua-min, et al. Three-dimensional forward modeling and analysis of transient electromagnetic for detecting embankment's hidden danger[J]. Journal of Yangtze River Scientific Research Institute, 2019, 36(10): 146–150, 156. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201910035.htm
|
[52] |
盛小涛, 张伟, 李少龙, 等. 阳新长江干堤减压井清淤洗井技术研究[J]. 人民长江, 2020, 51(11): 209–213. https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE202011035.htm
SHENG Xiao-tao, ZHANG Wei, LI Shao-long, et al. Study on dredging and washing technique of relief well in Yangxin reach of Yangtze River main dyke[J]. Yangtze River, 2020, 51(11): 209–213. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE202011035.htm
|
[53] |
田密, 盛小涛. 减压井超声波解堵试验初步研究[J]. 长江科学院院报, 2021, 38(6): 102–107. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB202106018.htm
TIAN Mi, SHENG Xiao-tao. Plugging removal test of dike relief well based on ultrasonic technology[J]. Journal of Yangtze River Scientific Research Institute, 2021, 38(6): 102–107. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB202106018.htm
|
[54] |
邬爱清, 吴庆华, 包承纲, 等. 一种自稳性防汛构筑物及其快速搭建方法: CN109881625B[P]. 2020-07-10.
WU Ai-qing, WU Qing-hua, BAO Chen-gang, et al. A Self-Stabilizing Equipment and Quick Build Method for Flood Prevention and Rescue China: CN109881625B[P]. 2020-07-10. (in Chinese)
|
[55] |
邬爱清, 盛小涛, 吴庆华, 等. 一种新型植入式减压井降压排水系统及方法: CN110130378B[P]. 2019-12-27.
WU Ai-qing, SHENG Xiao-tao, WU Qing-hua, et al. A Novel Drop Pressure-Drainage System and Method Based on the Implantable Decompression Well China: CN110130378B[P]. 2019-12-27. (in Chinese)
|
[56] |
程永辉, 陈航, 熊勇, 等. 一种用于溃口抢险的旋转式快速消能系统及应用方法. 中国: ZL202010491729.9[P]. 2019.8. 6.
CHENG Yong-hui, CHEN Hang, XIONG Yong, et al. A Rotary Rapid Energy Dissipation System and Application Method for Closure of Breach. China: ZL202010491729.9[P]. 2019.8. 6. (in Chinese)
|
[57] |
郭成超, 杨建超, 石明生, 等. 高聚物超薄防渗墙施工设备及工艺改进[J]. 水利水电科技进展, 2020, 40(3): 68–71, 77. https://www.cnki.com.cn/Article/CJFDTOTAL-SLSD202003012.htm
GUO Cheng-chao, YANG Jian-chao, SHI Ming-sheng, et al. Improvement of construction equipment and technology of super-thin cut-off walls with polymer[J]. Advances in Science and Technology of Water Resources, 2020, 40(3): 68–71, 77. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLSD202003012.htm
|