• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
YU Tao, FANG Yong, YAO Zhi-gang, PU Song, YE Lai-bin, ZHAO Guang-ming. Bearing effect of prestressed bolt-anchored structures and mechanical analysis of surrounding rock[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1069-1077. DOI: 10.11779/CJGE202206011
Citation: YU Tao, FANG Yong, YAO Zhi-gang, PU Song, YE Lai-bin, ZHAO Guang-ming. Bearing effect of prestressed bolt-anchored structures and mechanical analysis of surrounding rock[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1069-1077. DOI: 10.11779/CJGE202206011

Bearing effect of prestressed bolt-anchored structures and mechanical analysis of surrounding rock

More Information
  • Received Date: July 13, 2021
  • Available Online: September 22, 2022
  • Because of complicated interaction mechanism between bolt and surrounding rock in tunnels, the design is mostly based on the analogy method and experience. Starting from the anchorage structure formed by the bolt in continuously uniform strata, a formula for bearing strength is established, and the parameters in the formula are determined. By analyzing the bearing characteristics of anchorage structure, the influence degree of different factors on the bearing strength can be obtained. On this basis, the definitions of "amplification factor of supporting force " and "strength of anchor circumscription" are put forward. Besides, the anchorage structure can be equivalent to the support stress so as to resolve the stress distribution of tunnel surrounding rock, plastic zone and displacement, which is verified by the numerical simulation and numerical example. The results show that anchorage structure has an amplification effect on bolting force and provides a strong supporting force in the surrounding rock of deep tunnel. The influence degree structure for the strength of anchorage is followed by mechanical parameters, anchoring thickness and supporting strength from large to small, among which the mechanical parameters play a crucial role in the bearing strength of anchorage, and the reasonable anchoring thickness is 0.4~0.8 times the diameter of the tunnel. Furthermore, the stability control principle of surrounding rock is proposed. By comparing the theoretical results with the bolt support and equal effectiveness support in the numerical simulation, the plastic zone, stress distribution and displacement around the tunnel are basically the same. The proposed theories may provide a scientific analysis method for the stability control of the tunnel with bolt support.
  • [1]
    FREEMAN T J. The behaviour of fully-bonded rock bolts in the Kielder experimental tunnel[J]. Tunnels and Tunnelling, 1978, 10(5): 37–40.
    [2]
    CHEN Y. Experimental study and stress analysis of rock bolt anchorage performance[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2014, 6(5): 428–437. doi: 10.1016/j.jrmge.2014.06.002
    [3]
    赵东平, 王卢伟, 喻渝, 等. 隧道系统锚杆研究现状与发展方向[J]. 土木工程学报, 2020, 53(8): 116–128. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202008013.htm

    ZHAO Dong-ping, WANG Lu-wei, YU Yu, et al. Research status and development direction of tunnel system bolt[J]. China Civil Engineering Journal, 2020, 53(8): 116–128. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202008013.htm
    [4]
    LUNARDI P. Fibre-glass tubes to stabilise the face of tunnels in difficult cohesive soils[J]. Mater Eng, 1995, 6: 107–165.
    [5]
    姚强岭, 王伟男, 孟国胜, 等. 树脂锚杆不同锚固长度锚固段受力特征试验研究[J]. 采矿与安全工程学报, 2019, 36(4): 643–649. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201904001.htm

    YAO Qiang-ling, WANG Wei-nan, MENG Guo-sheng, et al. Experimental study on mechanical characteristics of resin bolt anchoring section with different anchorage lengths[J]. Journal of Mining & Safety Engineering, 2019, 36(4): 643–649. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201904001.htm
    [6]
    刘建庄, 张农, 韩昌良. 弹性拉拔中锚杆轴力和剪力分布力学计算[J]. 中国矿业大学学报, 2012, 41(3): 344–348. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201203003.htm

    LIU Jian-zhuang, ZHANG Nong, HAN Chang-liang. Elastic stress distributions: axial and shear stress distributions in an anchor bolt during a pullout test[J]. Journal of China University of Mining & Technology, 2012, 41(3): 344–348. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201203003.htm
    [7]
    郭震山, 郑俊杰, 崔岚, 等. 聚酯锚杆与传统锚杆的力学性能及支护效果比较分析[J]. 岩土工程学报, 2015, 37(增刊1): 202–206. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2015S1039.htm

    GUO Zhen-shan, ZHENG Jun-jie, CUI Lan, et al. Comparative analysis of mechanical properties and support effects of polyester bolt and traditional steel bolt[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(S1): 202–206. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2015S1039.htm
    [8]
    吴学震, 王刚, 蒋宇静, 等. 拉压耦合大变形锚杆作用机理及其试验研究[J]. 岩土工程学报, 2015, 37(1): 139–147. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201501020.htm

    WU Xue-zhen, WANG Gang, JIANG Yu-jing, et al. Mechanism of CTC-yield bolts and its experimental research[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(1): 139–147. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201501020.htm
    [9]
    姚显春, 李宁, 陈蕴生. 隧洞中全长黏结式锚杆的受力分析[J]. 岩石力学与工程学报, 2005, 24(13): 2272–2276. doi: 10.3321/j.issn:1000-6915.2005.13.012

    YAO Xian-chun, LI Ning, CHEN Yun-sheng. Theoretical solution for shear stresses on interface of fully grouted bolt in tunnels[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(13): 2272–2276. (in Chinese) doi: 10.3321/j.issn:1000-6915.2005.13.012
    [10]
    方勇, 何川. 全长黏结式锚杆与隧道围岩相互作用研究[J]. 工程力学, 2007, 24(6): 111–116. doi: 10.3969/j.issn.1000-4750.2007.06.019

    FANG Yong, HE Chuan. Study on the interaction of whole bonded rock bolt and tunnel surrounding rock[J]. Engineering Mechanics, 2007, 24(6): 111–116. (in Chinese) doi: 10.3969/j.issn.1000-4750.2007.06.019
    [11]
    CAI Y, ESAKI T, JIANG Y J. An analytical model to predict axial load in grouted rock bolt for soft rock tunnelling[J]. Tunnelling and Underground Space Technology, 2004, 19(6): 607–618. doi: 10.1016/j.tust.2004.02.129
    [12]
    徐金海, 石炳华, 王云海. 锚固体强度与组合拱承载能力的研究与应用[J]. 中国矿业大学学报, 1999, 28(5): 482–485. doi: 10.3321/j.issn:1000-1964.1999.05.018

    XU Jin-hai, SHI Bing-hua, WANG Yun-hai. Research on strength of reinforced unit and bearing capability of broken rock arch and its application[J]. Journal of China University of Mining & Technology, 1999, 28(5): 482–485. (in Chinese) doi: 10.3321/j.issn:1000-1964.1999.05.018
    [13]
    余伟健, 高谦, 朱川曲. 深部软弱围岩叠加拱承载体强度理论及应用研究[J]. 岩石力学与工程学报, 2010, 29(10): 2134–2142. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201010026.htm

    YU Wei-jian, GAO Qian, ZHU Chuan-qu. Study of strength theory and application of overlap arch bearing body for deep soft surrounding rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(10): 2134–2142. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201010026.htm
    [14]
    文竞舟, 杨春雷, 粟海涛, 等. 软弱破碎围岩隧道锚喷钢架联合支护的复合拱理论及应用研究[J]. 土木工程学报, 2015, 48(5): 115–122. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201505017.htm

    WEN Jing-zhou, YANG Chun-lei, SU Hai-tao, et al. Theoretical analysis and application of composite arch for bolt-shotcrete steel frame supported tunnel in weak and fractured rock mass[J]. China Civil Engineering Journal, 2015, 48(5): 115–122. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201505017.htm
    [15]
    ANAGNOSTOU G. The contribution of horizontal arching to tunnel face stability[J]. Geotechnik, 2012, 35(1): 34–44. doi: 10.1002/gete.201100024
    [16]
    ANAGNOSTOU G, SERAFEIMIDIS K. The dimensioning of tunnel face reinforcement[C]//Proceedings of ITA World Tunnel Congress 2007"Underground space – The 4th Dimension of Metropolises". 2007. Prague.
    [17]
    ANAGNOSTOU G, PERAZZELLI P. Analysis method and design charts for bolt reinforcement of the tunnel face in cohesive-frictional soils[J]. Tunnelling and Underground Space Technology, 2015, 47: 162–181. doi: 10.1016/j.tust.2014.10.007
    [18]
    WINDSOR C R. Rock reinforcement systems[J]. International Journal of Rock Mechanics and Mining Sciences, 1997, 34(6): 919–951. doi: 10.1016/S1365-1609(97)80004-4
    [19]
    吴学震, 蒋宇静, 王刚, 等. 大变形锚杆支护效应分析[J]. 岩土工程学报, 2016, 38(2): 245–252. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201602010.htm

    WU Xue-zhen, JIANG Yu-jing, WANG Gang, et al. Reinforcement effect of yielding bolts[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(2): 245–252. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201602010.htm
    [20]
    BOBET A, EINSTEIN H H. Tunnel reinforcement with rockbolts[J]. Tunnelling and Underground Space Technology, 2011, 26(1): 100–123.
    [21]
    INDRARATNA B, KAISER P K. Analytical model for the design of grouted rock bolts[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1990, 14(4): 227–251.
    [22]
    张益东. 锚固复合承载体承载特性研究及在巷道锚杆支护设计中的应用[D]. 徐州: 中国矿业大学, 2013.

    ZHANG Yi-dong. Study on Bearing Characteristic of Composite Bolt-Rock Bearing Structure and Its Application in Roadway Bolting Design[D]. Xuzhou: China University of Mining and Technology, 2013. (in Chinese)
    [23]
    PARK K H, KIM Y J. Analytical solution for a circular opening in an elastic-brittle-plastic rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2006, 43(4): 616–622.
    [24]
    HOEK E, BROWN E T. Practical estimates of rock mass strength[J]. International Journal of Rock Mechanics and Mining Sciences, 1997, 34(8): 1165–1186.
  • Cited by

    Periodical cited type(22)

    1. 王凤云,潘锐,蔡毅,聂利青,蔡永祥,唐民军. 深埋隧道长短锚杆锚固围岩破坏模型试验. 科学技术与工程. 2025(06): 2480-2489 .
    2. 张天予,钟新谷,赵超,程忠悦. 锚杆张拉力无损测试原理与技术研究. 岩土工程学报. 2024(01): 140-150 . 本站查看
    3. 王惠贤,吴庆良,鲍安红,唐彬雪. 锚杆支护下两向不等压深埋隧洞受力与变形弹性分析. 科学技术与工程. 2024(02): 757-765 .
    4. 郝艳广,徐建升,明道贵,雷霆,邱明喜,陈迪杨. 锚杆加固作用下椭圆形深埋隧洞承载力分析. 山东大学学报(工学版). 2024(01): 131-140 .
    5. 金宇轩. 基于Hoek-Brown强度准则的锚杆支护效应研究. 公路工程. 2024(02): 105-109 .
    6. 张新宙,李聪,吴亮亮,谢天,赵凯艺,蔡玮珍,张荣堂. 冻融作用下锚固裂隙岩体力学响应研究综述. 煤炭科技. 2024(02): 19-26 .
    7. 张晓君,刘啸,何俊玲. 基于锚杆预紧力的深部硬岩岩爆监测及防控研究. 岩石力学与工程学报. 2024(S1): 3498-3506 .
    8. 王怀健,崔乃育,金宇轩,石云冈,谭鑫. 基于Mohr-Coulomb强度准则的锚杆支护效应研究. 路基工程. 2024(03): 47-53 .
    9. 王彤彤,刘文龙,曹立雪,秦哲,张润昌. 浅埋隧道预应力锚固体承载效应模型实验研究. 矿业科学学报. 2024(03): 370-380 .
    10. 罗春雨,廖杭,余涛,李梦可,王飞阳,方勇. 考虑锚杆预应力作用下隧道围岩力学分析及参数设计. 铁道标准设计. 2024(06): 153-160+220 .
    11. 余涛,罗虎,姜逸帆,姚志刚,李梦可,方勇. 软弱破碎围岩地层预应力管–索结构的提出及应用. 岩石力学与工程学报. 2024(06): 1505-1518 .
    12. 王耀华,豆留盼,余涛,满军,方勇,姚志刚. 基于预应力场分布的锚杆支护参数设计. 铁道建筑. 2024(07): 111-115 .
    13. 秦哲,刘文龙,武发宇,韩继欢,李为腾,冯强,刘永德. 考虑层叠拱传递效应的浅埋硬岩隧道支护力研究及应用. 岩石力学与工程学报. 2024(09): 2165-2177 .
    14. 任帅,肖殿才,罗勇,余国锋,任波,高翔. 淮南矿区强采动影响下煤巷锚网安全支护与围岩控制技术. 煤炭工程. 2024(11): 29-37 .
    15. 蒲松,向龙,廖杭,余涛,姚志刚,方勇,朱牧原,魏力峰,张乾. 极高地应力层状围岩隧道偏压演化规律及围岩控制. 现代隧道技术. 2023(01): 90-99 .
    16. 阳建明,李奉杰. 浅埋偏压隧道下穿自然保护区施工方案研究. 铁道勘察. 2023(03): 116-122 .
    17. 刘鹏,刘军,郑仔弟,郑辉,白雪. 基于GFRP筋与钢绞线复合式锚杆支护施工的关键技术研究. 市政技术. 2023(08): 245-252 .
    18. 吴奇,郑德华,胡创,王永锋,杨彬. 基于锥形特征的二维横断面锚杆噪点剔除方法研究. 工程地球物理学报. 2023(04): 572-580 .
    19. 王想君,李英明,赵光明,孟祥瑞,王艺,程详. 全长锚固锚杆支护软岩巷道围岩承载结构力学响应解析. 煤炭科学技术. 2023(10): 24-34 .
    20. 查文华,梁译文,王澄菡,王京九,许涛,程文博,林杭. 剪切作用下新型拉力分散型麻花锚杆承载性能研究. 水利水电技术(中英文). 2023(11): 40-52 .
    21. 刘宇,巫雅杰,杜宪武,杨玉平,李晨子. 高速公路隧道浅埋下穿建筑物变形控制研究. 江苏科技信息. 2022(15): 54-57 .
    22. 查文华,王澄菡,梁译文,刘小虎,刘造保. 新型拉力分散型麻花锚杆锚固性能试验研究. 地下空间与工程学报. 2022(S2): 696-701 .

    Other cited types(12)

Catalog

    Article views (190) PDF downloads (140) Cited by(34)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return