• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Liangliang, DENG Gang, CHEN Rui, ZHANG Yinqi, LUO Zhiyuan. Experimental investigation on evolution process of suffusion in gap-graded cohesionless soil[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(7): 1412-1420. DOI: 10.11779/CJGE20220468
Citation: ZHANG Liangliang, DENG Gang, CHEN Rui, ZHANG Yinqi, LUO Zhiyuan. Experimental investigation on evolution process of suffusion in gap-graded cohesionless soil[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(7): 1412-1420. DOI: 10.11779/CJGE20220468

Experimental investigation on evolution process of suffusion in gap-graded cohesionless soil

More Information
  • Received Date: April 18, 2022
  • Available Online: February 19, 2023
  • The suffusion involves selective erosion and gradual migration of fine particles through the voids of soil skeleton formed by coarse particles under seepage flow. As a result, redistribution of soil skeleton stress and deformation of soil may be induced. In this study, a series of suffusion tests are carried out using the triaxial erosion apparatus with measurable local pore pressure. The effects of the initial fine particle content and initial relative density on the suffusion of a gap-graded cohesionless soil are investigated. According to the spatial-temporal evolution of local hydraulic gradients along seepage path, the evolution process of the suffusion is revealed. Test results show that both the initiation and the failure hydraulic gradients of the gap-graded cohesionless soil increase with the increase of the fine particle content and relative density. The cumulative loss of fine particles decreases significantly with the increase of the relative density. When the relative density increases to a certain value under isotropic stress condition, the gap-graded cohesionless soil will change from an unstable state of seepage to a stable one. Additionally, the internal manifestation of suffusion initiation of soil is the mutation and uneven distribution of local hydraulic gradient along seepage path. The suffusion will cause the loss of fine particles, as well as the increase of the void ratio. Under the isotropic stress condition, the volume shrinkage is induced.
  • [1]
    FOSTER M, FELL R, SPANNAGLE M. The statistics of embankment dam failures and accidents[J]. Canadian Geotechnical Journal, 2000, 37(5): 1000-1024. doi: 10.1139/t00-030
    [2]
    Iternational Commiss on Large Dams. Internal Erosion of Existing Dams, Levees and Dikes, and Their Toundations (ICOLD Bulletin 164)[R]. Paris: Iternational Commiss on Large Dams, 2017.
    [3]
    KÉZDI, A. Soil Physics[M]. Amsterdam: Elsevier Scientific Publishing Company, 1979.
    [4]
    李伟一, 钱建固, 尹振宇, 等. 间断级配砂土渗流侵蚀现象的CFD-DEM模拟[J]. 岩土力学, 2021, 42(11): 3191-3201. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202111028.htm

    LI Weiyi, QIAN Jiangu, YIN Zhenyu, et al. Simulation of seepage erosion in gap graded sand soil using CFD-DEM[J]. Rock and Soil Mechanics, 2021, 42(11): 3191-3201. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202111028.htm
    [5]
    OUEIDAT M, BENAMAR A, BENNABI A. Effect of fine particles and soil heterogeneity on the initiation of suffusion[J]. Geotechnical and Geological Engineering, 2021, 39(3): 2359-2371. doi: 10.1007/s10706-020-01632-8
    [6]
    宋林辉, 黄强, 闫迪, 等. 水力梯度对黏土渗透性影响的试验研究[J]. 岩土工程学报, 2018, 40(9): 1635-1641. doi: 10.11779/CJGE201809009

    SONG Linhui, HUANG Qiang, YAN Di, et al. Experimental study on effect of hydraulic gradient on permeability of clay[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(9): 1635-1641. (in Chinese) doi: 10.11779/CJGE201809009
    [7]
    PACHIDEH V, MIR MOHAMMAD HOSSEINI S M. A new physical model for studying flow direction and other influencing parameters on the internal erosion of soils[J]. Geotechnical Testing Journal, 2019, 42(6): 20170301. doi: 10.1520/GTJ20170301
    [8]
    CHANG D S, ZHANG L M. Critical hydraulic gradients of internal erosion under complex stress states[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(9): 1454-1467. doi: 10.1061/(ASCE)GT.1943-5606.0000871
    [9]
    陈勇, 闵泽鑫, 夏振尧, 等. 渗流作用下粉土质砂潜蚀演化特征与预测模型[J/OL]. 土木与环境工程学报(中英文), 2023: 1-9.

    CHEN Yong, MING Zexin, XIA Zhenyao, et al. Evolution characteristics and prediction model on suffusion of silty-sand subjected to seepage[J/OL]. Journal of Civil and Environmental Engineering, 2023: 1-9. https://kns.cnki.net/kcms/detail/50.1218.TU.20210816.1145.003.html. (in Chinese)
    [10]
    刘杰, 谢定松. 砾石土渗透稳定特性试验研究[J]. 岩土力学, 2012, 33(9): 2632-2638. doi: 10.16285/j.rsm.2012.09.009

    LIU Jie, XIE Dingsong. Research on seepage stability experiment of gravelly soil[J]. Rock and Soil Mechanics, 2012, 33(9): 2632-2638. (in Chinese) doi: 10.16285/j.rsm.2012.09.009
    [11]
    陈生水, 凌华, 米占宽, 等. 大石峡砂砾石坝料渗透特性及其影响因素研究[J]. 岩土工程学报, 2019, 41(1): 26-31. doi: 10.11779/CJGE201901002

    CHEN Shengshui, LING Hua, MI Zhankuan, et al. Experimental study on permeability and its influencing factors for sandy gravel of Dashixia Dam[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 26-31. (in Chinese) doi: 10.11779/CJGE201901002
    [12]
    陈群, 谷宏海, 何昌荣. 砾石土防渗料-反滤料联合抗渗试验[J]. 四川大学学报(工程科学版), 2012, 44(1): 13-18. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201201004.htm

    CHEN Qun, GU Honghai, HE Changrong. Combination seepage failure test of gravelly soil and the filter[J]. Journal of Sichuan University (Engineering Science Edition), 2012, 44(1): 13-18. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201201004.htm
    [13]
    LIANG Y, YEH T C J, ZHA Y Y, et al. Onset of suffusion in gap-graded soils under upward seepage[J]. Soils and Foundations, 2017, 57(5): 849-860. doi: 10.1016/j.sandf.2017.08.017
    [14]
    LIU K W, QIU R Z, SU Q, et al. Suffusion response of well graded gravels in roadbed of non-ballasted high speed railway[J]. Construction and Building Materials, 2021, 284: 122848. doi: 10.1016/j.conbuildmat.2021.122848
    [15]
    袁涛, 蒋中明, 刘德谦, 等. 粗粒土渗透损伤特性试验研究[J]. 岩土力学, 2018, 39(4): 1311-1316, 1336. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201804022.htm

    YUAN Tao, JIANG Zhongming, LIU Deqian, et al. Experiment on the seepage damage coarse grain soil[J]. Rock and Soil Mechanics, 2018, 39(4): 1311-1316, 1336. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201804022.htm
    [16]
    KE L, TAKAHASHI A. Strength reduction of cohesionless soil due to internal erosion induced by one-dimensional upward seepage flow[J]. Soils and Foundations, 2012, 52(4): 698-711. doi: 10.1016/j.sandf.2012.07.010
    [17]
    WANG J J, QIU Z F. Anisotropic hydraulic conductivity and critical hydraulic gradient of a crushed sandstone–mudstone particle mixture[J]. Marine Georesources & Geotechnology, 2017, 35(1): 89-97.
    [18]
    MOFFAT R, FANNIN R J, GARNER S J. Spatial and temporal progression of internal erosion in cohesionless soil[J]. Canadian Geotechnical Journal, 2011, 48(3): 399-412. doi: 10.1139/T10-071
    [19]
    谷敬云, 罗玉龙, 张兴杰, 等. 基于平面激光诱导荧光的潜蚀可视化试验装置及其初步应用[J]. 岩石力学与工程学报, 2021, 40(6): 1287-1296. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202106019.htm

    GU Jingyun, LUO Yulong, ZHANG Xingjie, et al. A suffusion visualization apparatus based on planar laser induced fluorescence and the preliminary application[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(6): 1287-1296. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202106019.htm
    [20]
    梁越, 代磊, 魏琦. 基于透明土和粒子示踪技术的渗流侵蚀试验研究[J]. 岩土工程学报, 2022, 44(6): 1133-1140. doi: 10.11779/CJGE202206018

    LIANG Yue, DAI Lei, WEI Qi. Experimental study on seepage erosion based on transparent soil and particle tracing technology[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1133-1140. (in Chinese) doi: 10.11779/CJGE202206018
    [21]
    常东升, 张利民. 土体渗透稳定性判定准则[J]. 岩土力学, 2011, 32(增刊1): 253-259. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2011S1045.htm

    CHANG Dongsheng, ZHANG Limin. Internal stability criteria for soils[J]. Rock and Soil Mechanics, 2011, 32(S1): 253-259. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2011S1045.htm
    [22]
    朱秦, 苏立君, 刘振宇, 等. 颗粒迁移作用下宽级配土渗透性研究[J]. 岩土力学, 2021, 42(1): 125-134. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202101014.htm

    ZHU Qin, SU Lijun, LIU Zhenyu, et al. Study of seepage in wide-grading soils with particles migration[J]. Rock and Soil Mechanics, 2021, 42(1): 125-134. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202101014.htm
    [23]
    周健, 姚志雄, 张刚. 基于散体介质理论的砂土管涌机制研究[J]. 岩石力学与工程学报, 2008, 27(4): 749-756. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200804016.htm

    ZHOU Jian, YAO Zhixiong, ZHANG Gang. Research on piping mechanism in sandy soils based on discrete element theory[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(4): 749-756. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200804016.htm
    [24]
    KE L, TAKAHASHI A. Experimental investigations on suffusion characteristics and its mechanical consequences on saturated cohesionless soil[J]. Soils and Foundations, 2014, 54(4): 713-730.
    [25]
    陈锐, 谭润锵, 赵燕茹, 等. 一种用于乳胶膜开孔后的密封装置及其使用方法: CN111042097A[P]. 2020-04-21.

    CHEN Rui, TAN Runqiang, ZHAO Yanru, et al. Sealing Device Used after Hole Forming of Latex Film and Application Method of Sealing Device: CN111042097A[P]. 2020-04-21. (in Chinese)
    [26]
    KENNEY T C, LAU D. Internal stability of granular filters[J]. Canadian Geotechnical Journal, 1985, 22(2): 215-225.
    [27]
    CHANG D S, ZHANG L M, et al. A stress-controlled erosion apparatus for studying internal erosion in soils[J]. Geotechnical Testing Journal, 2011, 34(6): 103889.
    [28]
    CHEN C, ZHANG L M, ZHU H. A photographic method for measuring soil deformations during internal erosion under triaxial stress conditions[J]. Geotechnical Testing Journal, 2018, 41(1): 20170031.
    [29]
    RICHARDS K S, REDDY K R, et al. True triaxial piping test apparatus for evaluation of piping potential in earth structures[J]. Geotechnical Testing Journal, 2010, 33(1): 102246.
    [30]
    LIANG Y, ZENG C, WANG J J, et al. Constant gradient erosion apparatus for appraisal of piping behavior in upward seepage flow[J]. Geotechnical Testing Journal, 2017, 40(4): 630-642.
    [31]
    DENG G, ZHANG L L, CHEN R, et al. Experimental investigation on suffusion characteristics of cohesionless soils along horizontal seepage flow under controlled vertical stress[J]. Frontiers in Earth Science, 2020, 8: 195.
  • Related Articles

    [1]LÜ Xi-lin, ZENG Sheng, WANG Yuan-peng, MA Shao-kun, HUANG Mao-song. Physical model tests on stability of shield tunnel face in saturated gravel stratum[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 129-132. DOI: 10.11779/CJGE2019S2033
    [2]JIN Da-long, YUAN Da-jun, ZHENG Hao-tian, LI Xing-gao, DING Fei. Centrifugal model tests on face stability of slurry shield tunnels under high water pressures[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1653-1660. DOI: 10.11779/CJGE201909009
    [3]LI Wei-ping, LI Xing, XUE Ya-dong, ZHANG Sen, GE Jia-cheng. Model tests on face stability of shallow shield tunnels in sandy cobble strata[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S2): 199-203. DOI: 10.11779/CJGE2018S2040
    [4]XU Qian-wei, TANG Zhuo-hua, ZHU He-hua, WANG Gguo-fu, LU Lin-hai. Limit support pressure at excavation face of shield tunnels[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(7): 1234-1240. DOI: 10.11779/CJGE201707009
    [5]CHEN Meng-qiao, LIU Jian-kun, XIAO Jun-hua, TIAN Ze-ye. Face supporting pressure of slurry shield tunnel under high hydraulic pressure[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 163-169.
    [6]Lü Xi-lin, LI Feng-di, HUANG Mao-song, JIAO Qi-zhu, HU Wen-ting. 3D limit support pressure solution for shield tunnel face subjected to seepage[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk1): 108-112.
    [7]TANG Lü-jun, CHEN Ren-peng, YIN Xin-sheng, KONG Ling-gang, HUANG Bo, CHEN Yun-min. Centrifugal model tests on face stability of shield tunnels in dense sand[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(10): 1830-1838.
    [8]WANG Hao-ran, HUANG Mao-song, Lü Xi-lin, ZHOU Wei-xiang. Upper-bound limit analysis of stability of shield tunnel face considering seepage[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(9): 1696-1704.
    [9]Large-scale tests on face stability of shield tunnelling in dry cohesionless soil[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(1).
    [10]ZHU Wei, QIN Jianshe, LU Tinghao. Numerical study on face movement and collapse around shield tunnels in sand[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(8): 897-902.

Catalog

    Article views (358) PDF downloads (122) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return