Citation: | ZUO Kangle, GU Xiaoqiang. Experimental study on liquefaction characteristics of sand with fines under different particle size ratios[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(7): 1461-1470. DOI: 10.11779/CJGE20220401 |
[1] |
YOUD T L, IDRISS I M. Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(4): 297-313. doi: 10.1061/(ASCE)1090-0241(2001)127:4(297)
|
[2] |
陈国兴, 金丹丹, 常向东, 等. 最近20年地震中场地液化现象的回顾与土体液化可能性的评价准则[J]. 岩土力学, 2013, 34(10): 2737-2755, 2795. doi: 10.16285/j.rsm.2013.10.005
CHEN Guoxing, JIN Dandan, CHANG Xiangdong, et al. Review of soil liquefaction characteristics during major earthquakes in recent twenty years and liquefaction susceptibility criteria for soils[J]. Rock and Soil Mechanics, 2013, 34(10): 2737-2755, 2795. (in Chinese) doi: 10.16285/j.rsm.2013.10.005
|
[3] |
AMINI F, QI G Z. Liquefaction testing of stratified silty sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126(3): 208-217. doi: 10.1061/(ASCE)1090-0241(2000)126:3(208)
|
[4] |
CHANG N Y, YEH S T, KAUFMAN L P. Liquefaction potential of clean and silty sands[C]. //Proceedings of 3rd International Conference on Earthquake Microzonation Conference, Seattle, 1982.
|
[5] |
KUERBIS R, NEGUSSEY D, VAID Y. Effect of gradation and fines content on the undrained response of sand[J]. Geotechnical Special Publication, 1988(21): 330-345.
|
[6] |
STAMATOPOULOS C A. An experimental study of the liquefaction strength of silty sands in terms of the state parameter[J]. Soil Dynamics and Earthquake Engineering, 2010, 30(8): 662-678. doi: 10.1016/j.soildyn.2010.02.008
|
[7] |
CHIEN L K, OH Y N, CHANG C H. Effects of fines content on liquefaction strength and dynamic settlement of reclaimed soil[J]. Canadian Geotechnical Journal, 2002, 39(1): 254-265. doi: 10.1139/t01-083
|
[8] |
POLITO C P, MARTIN J R. Effects of nonplastic fines on the liquefaction resistance of sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(5): 408-415. doi: 10.1061/(ASCE)1090-0241(2001)127:5(408)
|
[9] |
XENAKI V C, ATHANASOPOULOS G A. Liquefaction resistance of sand-silt mixtures: an experimental investigation of the effect of fines[J]. Soil Dynamics and Earthquake Engineering, 2003, 23(3): 1-12. doi: 10.1016/S0267-7261(02)00210-5
|
[10] |
STAMATOPOULOS C A. The effect of fines on critical state and liquefaction resistance characteristics of non-plastic silty Sands1[J]. Soils and Foundations, 2010, 50(1): 173-176. doi: 10.3208/sandf.50.173
|
[11] |
DASH H K, SITHARAM T G. Undrained cyclic pore pressure response of sand–silt mixtures: effect of nonplastic fines and other parameters[J]. Geotechnical and Geological Engineering, 2009, 27(4): 501-517. doi: 10.1007/s10706-009-9252-5
|
[12] |
OKA L G, DEWOOLKAR M, OLSON S M. Comparing laboratory-based liquefaction resistance of a sand with non-plastic fines with shear wave velocity-based field case histories[J]. Soil Dynamics and Earthquake Engineering, 2018, 113: 162-173. doi: 10.1016/j.soildyn.2018.05.028
|
[13] |
吴琪, 陈国兴, 朱雨萌, 等. 基于等效骨架孔隙比指标的饱和砂类土抗液化强度评价[J]. 岩土工程学报, 2018, 40(10): 1912-1922. doi: 10.11779/CJGE201810019
WU Qi, CHEN Guoxing, ZHU Yumeng, et al. Evaluating liquefaction resistance of saturated sandy soils based on equivalent skeleton void ratio[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(10): 1912-1922. (in Chinese) doi: 10.11779/CJGE201810019
|
[14] |
CHEN G X, WU Q, ZHAO K, et al. A binary packing material–based procedure for evaluating soil liquefaction triggering during earthquakes[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(6): 04020040. doi: 10.1061/(ASCE)GT.1943-5606.0002263
|
[15] |
KARIM M E, ALAM M J. Effect of non-plastic silt content on the liquefaction behavior of sand–silt mixture[J]. Soil Dynamics and Earthquake Engineering, 2014, 65: 142-150. doi: 10.1016/j.soildyn.2014.06.010
|
[16] |
THEVANAYAGAM S. Effect of fines and confining stress on undrained shear strength of silty sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(6): 479-491. doi: 10.1061/(ASCE)1090-0241(1998)124:6(479)
|
[17] |
THEVANAYAGAM S, MARTIN G R. Liquefaction in silty soils—screening and remediation issues[J]. Soil Dynamics and Earthquake Engineering, 2002, 22(9/10/11/12): 1035-1042.
|
[18] |
MOHAMMADI A, QADIMI A. A simple critical state approach to predicting the cyclic and monotonic response of sands with different fines contents using the equivalent intergranular void ratio[J]. Acta Geotechnica, 2015, 10(5): 587-606. doi: 10.1007/s11440-014-0318-z
|
[19] |
RAHMAN M M, LO S R, GNANENDRAN C T. On equivalent granular void ratio and steady state behaviour of loose sand with fines[J]. Canadian Geotechnical Journal, 2008, 45(10): 1439-1456. doi: 10.1139/T08-064
|
[20] |
GOBBI S, REIFFSTECK P, LENTI L, et al. Liquefaction triggering in silty sands: effects of non-plastic fines and mixture-packing conditions[J]. Acta Geotechnica, 2022, 17(2): 391-410. doi: 10.1007/s11440-021-01262-1
|
[21] |
PORCINO D D, TRIANTAFYLLIDIS T, WICHTMANN T, et al. Application of critical state approach to liquefaction resistance of sand–silt mixtures under cyclic simple shear loading[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2021, 147(3): 04020177. doi: 10.1061/(ASCE)GT.1943-5606.0002470
|
[22] |
石兆吉, 郁寿松, 丰万玲. 土壤液化势的剪切波速判别法[J]. 岩土工程学报, 1993, 15(1): 74-80. doi: 10.3321/j.issn:1000-4548.1993.01.011
SHI Zhaoji, YU Shousong, FENG Wanling. Shear wave velocity discrimination method for soil liquefaction potential[J]. Chinese Journal of Geotechnical Engineering, 1993, 15(1): 74-80. (in Chinese) doi: 10.3321/j.issn:1000-4548.1993.01.011
|
[23] |
程国勇, 王建华, 张献民. 饱和砂土的剪切波速与其抗液化强度关系研究[J]. 岩土力学, 2007, 28(4): 689-693. doi: 10.3969/j.issn.1000-7598.2007.04.011
CHENG Guoyong, WANG Jianhua, ZHENG Xianmin. Experimeatal study on quantitative relationship between shear wave velocity and cyclic liquefaction resistance of saturated sand[J]. Rock and Soil Mechanics, 2007, 28(4): 689-693. (in Chinese) doi: 10.3969/j.issn.1000-7598.2007.04.011
|
[24] |
CHIEN L K, OH Y N. Influence of fines content and initial shear stress on dynamic properties of hydraulic reclaimed soil[J]. Canadian Geotechnical Journal, 2002, 39(1): 242-253. doi: 10.1139/t01-082
|
[25] |
SALGADO R, BANDINI P, KARIM A. Shear strength and stiffness of silty sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126(5): 451-462. doi: 10.1061/(ASCE)1090-0241(2000)126:5(451)
|
[26] |
GOUDARZY M, RAHMAN M M, KÖNIG D, et al. Influence of non-plastic fines content on maximum shear modulus of granular materials[J]. Soils and Foundations, 2016, 56(6): 973-983. doi: 10.1016/j.sandf.2016.11.003
|
[27] |
BOUCKOVALAS G D, ANDRIANOPOULOS K I, PAPADIMITRIOU A G. A critical state interpretation for the cyclic liquefaction resistance of silty sands[J]. Soil Dynamics and Earthquake Engineering, 2003, 23(2): 115-125. doi: 10.1016/S0267-7261(02)00156-2
|
[28] |
SZE H Y, YANG J. Failure modes of sand in undrained cyclic loading: impact of sample preparation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(1): 152-169. doi: 10.1061/(ASCE)GT.1943-5606.0000971
|
[29] |
ISHIBASHI I, CAPAR O F. Anisotropy and its relation to liquefaction resistance of granular material[J]. Soils and Foundations, 2003, 43(5): 149-159. doi: 10.3208/sandf.43.5_149
|
[30] |
YU H, ZENG X, LI B, et al. Effect of fabric anisotropy on liquefaction of sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(5): 765-774. doi: 10.1061/(ASCE)GT.1943-5606.0000807
|
[31] |
NI Q, TAN T S, DASARI G R, et al. Contribution of fines to the compressive strength of mixed soils[J]. Géotechnique, 2004, 54(9): 561-569. doi: 10.1680/geot.2004.54.9.561
|
[32] |
WEI X, YANG J, ZHOU Y G, et al. Influence of particle-size disparity on cyclic liquefaction resistance of silty sands[J]. Géotechnique Letters, 2020, 10(2): 155-161. doi: 10.1680/jgele.19.00076
|
[33] |
XU L Y, CAI F, CHEN W Y, et al. Undrained cyclic response of a dense saturated sand with various grain sizes and contents of nonplastic fines: experimental analysis and constitutive modeling[J]. Soil Dynamics and Earthquake Engineering, 2021, 145: 106727. doi: 10.1016/j.soildyn.2021.106727
|
[34] |
YANG J, WEI L M, DAI B B. State variables for silty sands: global void ratio or skeleton void ratio?[J]. Soils and Foundations, 2015, 55(1): 99-111. doi: 10.1016/j.sandf.2014.12.008
|
[35] |
顾晓强, 杨峻, 黄茂松, 等. 砂土剪切模量测定的弯曲元、共振柱和循环扭剪试验[J]. 岩土工程学报, 2016, 38(4): 740-746. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract16545.shtml
GU Xiaoqiang, YANG Jun, HUANG Maosong, et al. Combining bender element, resonant column and cyclic torsional shear tests to determine small strain shear modulus of sand[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 740-746. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract16545.shtml
|
[36] |
YANG J, GU X Q. Shear stiffness of granular material at small strains: does it depend on grain size?[J]. Géotechnique, 2013, 63(2): 165-179. doi: 10.1680/geot.11.P.083
|
[37] |
BOLTON SEED H, TOKIMATSU K, HARDER L F, et al. Influence of SPT procedures in soil liquefaction resistance evaluations[J]. Journal of Geotechnical Engineering, 1985, 111(12): 1425-1445. doi: 10.1061/(ASCE)0733-9410(1985)111:12(1425)
|
[38] |
XU L Y, ZHANG J Z, CAI F, et al. Constitutive modeling the undrained behaviors of sands with non-plastic fines under monotonic and cyclic loading[J]. Soil Dynamics and Earthquake Engineering, 2019, 123: 413-424. doi: 10.1016/j.soildyn.2019.05.021
|
[39] |
CHANEY R C, DEMARS K R, LADE P V, et al. Effects of non-plastic fines on minimum and maximum void ratios of sand[J]. Geotechnical Testing Journal, 1998, 21(4): 336. doi: 10.1520/GTJ11373J
|
[40] |
CUBRINOVSKI M, ISHIHARA K. Empirical correlation between SPT N-Value and relative density for sandy soils[J]. Soils and Foundations, 1999, 39(5): 61-71. doi: 10.3208/sandf.39.5_61
|
[41] |
YILMAZ Y, MOLLAMAHMUTOGLU M. Characterization of liquefaction susceptibility of sands by means of extreme void ratios and/or void ratio range[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(12): 1986-1990. doi: 10.1061/(ASCE)GT.1943-5606.0000164
|
[42] |
KIM U G, ZHUANG L, KIM D, et al. Evaluation of cyclic shear strength of mixtures with sand and different types of fines[J]. Marine Georesources & Geotechnology, 2017, 35(4): 447-455.
|
[43] |
PORCINO D D, DIANO V. The influence of non-plastic fines on pore water pressure generation and undrained shear strength of sand-silt mixtures[J]. Soil Dynamics and Earthquake Engineering, 2017, 101: 311-321. doi: 10.1016/j.soildyn.2017.07.015
|