• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZUO Kangle, GU Xiaoqiang. Experimental study on liquefaction characteristics of sand with fines under different particle size ratios[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(7): 1461-1470. DOI: 10.11779/CJGE20220401
Citation: ZUO Kangle, GU Xiaoqiang. Experimental study on liquefaction characteristics of sand with fines under different particle size ratios[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(7): 1461-1470. DOI: 10.11779/CJGE20220401

Experimental study on liquefaction characteristics of sand with fines under different particle size ratios

More Information
  • Received Date: April 04, 2022
  • Available Online: February 19, 2023
  • A series of undrained cyclic triaxial and bender element tests are carried out on sandy soils with three different particle size ratios by using the GDS cyclic triaxial apparatus with bender elements. The effects of fines content, density, initial effective confining pressure, sample preparation method and particle size ratio on liquefaction characteristics of sandy soils are analyzed. Whether the equivalent skeleton void ratio e* can reasonably and uniformly characterize the liquefaction resistance of the sandy soils under different initial states and different particle size ratios is discussed. The results show that e* can reasonably quantify the influences of low plastic fines content on liquefaction resistance CRR15 of various sandy soils, showing a negative idempotent relationship between CRR15 and e*. There is also a unique relationship between small strain shear modulus G0 and e*, which indicates a unique relationship between CRR15 and G0. It provides a new empirical method for the evaluation of liquefaction resistance of the sandy soils. Meanwhile, the influences of the initial confining pressure and sample preparation method should be considered when e* is used to characterize the liquefaction resistance, especially for smaller void ratio and fines content. When it is less than 9.9, the particle size ratio χ has a great influence on the relationship between CRR15 and e*, while it has a negligible effect when it is greater than 9.9. It is found that there is a unique relationship between equivalent relative density Dr* and CRR15 for the tested three sandy soils, despite of the fines content and particle size ratio.
  • [1]
    YOUD T L, IDRISS I M. Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(4): 297-313. doi: 10.1061/(ASCE)1090-0241(2001)127:4(297)
    [2]
    陈国兴, 金丹丹, 常向东, 等. 最近20年地震中场地液化现象的回顾与土体液化可能性的评价准则[J]. 岩土力学, 2013, 34(10): 2737-2755, 2795. doi: 10.16285/j.rsm.2013.10.005

    CHEN Guoxing, JIN Dandan, CHANG Xiangdong, et al. Review of soil liquefaction characteristics during major earthquakes in recent twenty years and liquefaction susceptibility criteria for soils[J]. Rock and Soil Mechanics, 2013, 34(10): 2737-2755, 2795. (in Chinese) doi: 10.16285/j.rsm.2013.10.005
    [3]
    AMINI F, QI G Z. Liquefaction testing of stratified silty sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126(3): 208-217. doi: 10.1061/(ASCE)1090-0241(2000)126:3(208)
    [4]
    CHANG N Y, YEH S T, KAUFMAN L P. Liquefaction potential of clean and silty sands[C]. //Proceedings of 3rd International Conference on Earthquake Microzonation Conference, Seattle, 1982.
    [5]
    KUERBIS R, NEGUSSEY D, VAID Y. Effect of gradation and fines content on the undrained response of sand[J]. Geotechnical Special Publication, 1988(21): 330-345.
    [6]
    STAMATOPOULOS C A. An experimental study of the liquefaction strength of silty sands in terms of the state parameter[J]. Soil Dynamics and Earthquake Engineering, 2010, 30(8): 662-678. doi: 10.1016/j.soildyn.2010.02.008
    [7]
    CHIEN L K, OH Y N, CHANG C H. Effects of fines content on liquefaction strength and dynamic settlement of reclaimed soil[J]. Canadian Geotechnical Journal, 2002, 39(1): 254-265. doi: 10.1139/t01-083
    [8]
    POLITO C P, MARTIN J R. Effects of nonplastic fines on the liquefaction resistance of sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(5): 408-415. doi: 10.1061/(ASCE)1090-0241(2001)127:5(408)
    [9]
    XENAKI V C, ATHANASOPOULOS G A. Liquefaction resistance of sand-silt mixtures: an experimental investigation of the effect of fines[J]. Soil Dynamics and Earthquake Engineering, 2003, 23(3): 1-12. doi: 10.1016/S0267-7261(02)00210-5
    [10]
    STAMATOPOULOS C A. The effect of fines on critical state and liquefaction resistance characteristics of non-plastic silty Sands1[J]. Soils and Foundations, 2010, 50(1): 173-176. doi: 10.3208/sandf.50.173
    [11]
    DASH H K, SITHARAM T G. Undrained cyclic pore pressure response of sand–silt mixtures: effect of nonplastic fines and other parameters[J]. Geotechnical and Geological Engineering, 2009, 27(4): 501-517. doi: 10.1007/s10706-009-9252-5
    [12]
    OKA L G, DEWOOLKAR M, OLSON S M. Comparing laboratory-based liquefaction resistance of a sand with non-plastic fines with shear wave velocity-based field case histories[J]. Soil Dynamics and Earthquake Engineering, 2018, 113: 162-173. doi: 10.1016/j.soildyn.2018.05.028
    [13]
    吴琪, 陈国兴, 朱雨萌, 等. 基于等效骨架孔隙比指标的饱和砂类土抗液化强度评价[J]. 岩土工程学报, 2018, 40(10): 1912-1922. doi: 10.11779/CJGE201810019

    WU Qi, CHEN Guoxing, ZHU Yumeng, et al. Evaluating liquefaction resistance of saturated sandy soils based on equivalent skeleton void ratio[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(10): 1912-1922. (in Chinese) doi: 10.11779/CJGE201810019
    [14]
    CHEN G X, WU Q, ZHAO K, et al. A binary packing material–based procedure for evaluating soil liquefaction triggering during earthquakes[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(6): 04020040. doi: 10.1061/(ASCE)GT.1943-5606.0002263
    [15]
    KARIM M E, ALAM M J. Effect of non-plastic silt content on the liquefaction behavior of sand–silt mixture[J]. Soil Dynamics and Earthquake Engineering, 2014, 65: 142-150. doi: 10.1016/j.soildyn.2014.06.010
    [16]
    THEVANAYAGAM S. Effect of fines and confining stress on undrained shear strength of silty sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(6): 479-491. doi: 10.1061/(ASCE)1090-0241(1998)124:6(479)
    [17]
    THEVANAYAGAM S, MARTIN G R. Liquefaction in silty soils—screening and remediation issues[J]. Soil Dynamics and Earthquake Engineering, 2002, 22(9/10/11/12): 1035-1042.
    [18]
    MOHAMMADI A, QADIMI A. A simple critical state approach to predicting the cyclic and monotonic response of sands with different fines contents using the equivalent intergranular void ratio[J]. Acta Geotechnica, 2015, 10(5): 587-606. doi: 10.1007/s11440-014-0318-z
    [19]
    RAHMAN M M, LO S R, GNANENDRAN C T. On equivalent granular void ratio and steady state behaviour of loose sand with fines[J]. Canadian Geotechnical Journal, 2008, 45(10): 1439-1456. doi: 10.1139/T08-064
    [20]
    GOBBI S, REIFFSTECK P, LENTI L, et al. Liquefaction triggering in silty sands: effects of non-plastic fines and mixture-packing conditions[J]. Acta Geotechnica, 2022, 17(2): 391-410. doi: 10.1007/s11440-021-01262-1
    [21]
    PORCINO D D, TRIANTAFYLLIDIS T, WICHTMANN T, et al. Application of critical state approach to liquefaction resistance of sand–silt mixtures under cyclic simple shear loading[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2021, 147(3): 04020177. doi: 10.1061/(ASCE)GT.1943-5606.0002470
    [22]
    石兆吉, 郁寿松, 丰万玲. 土壤液化势的剪切波速判别法[J]. 岩土工程学报, 1993, 15(1): 74-80. doi: 10.3321/j.issn:1000-4548.1993.01.011

    SHI Zhaoji, YU Shousong, FENG Wanling. Shear wave velocity discrimination method for soil liquefaction potential[J]. Chinese Journal of Geotechnical Engineering, 1993, 15(1): 74-80. (in Chinese) doi: 10.3321/j.issn:1000-4548.1993.01.011
    [23]
    程国勇, 王建华, 张献民. 饱和砂土的剪切波速与其抗液化强度关系研究[J]. 岩土力学, 2007, 28(4): 689-693. doi: 10.3969/j.issn.1000-7598.2007.04.011

    CHENG Guoyong, WANG Jianhua, ZHENG Xianmin. Experimeatal study on quantitative relationship between shear wave velocity and cyclic liquefaction resistance of saturated sand[J]. Rock and Soil Mechanics, 2007, 28(4): 689-693. (in Chinese) doi: 10.3969/j.issn.1000-7598.2007.04.011
    [24]
    CHIEN L K, OH Y N. Influence of fines content and initial shear stress on dynamic properties of hydraulic reclaimed soil[J]. Canadian Geotechnical Journal, 2002, 39(1): 242-253. doi: 10.1139/t01-082
    [25]
    SALGADO R, BANDINI P, KARIM A. Shear strength and stiffness of silty sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126(5): 451-462. doi: 10.1061/(ASCE)1090-0241(2000)126:5(451)
    [26]
    GOUDARZY M, RAHMAN M M, KÖNIG D, et al. Influence of non-plastic fines content on maximum shear modulus of granular materials[J]. Soils and Foundations, 2016, 56(6): 973-983. doi: 10.1016/j.sandf.2016.11.003
    [27]
    BOUCKOVALAS G D, ANDRIANOPOULOS K I, PAPADIMITRIOU A G. A critical state interpretation for the cyclic liquefaction resistance of silty sands[J]. Soil Dynamics and Earthquake Engineering, 2003, 23(2): 115-125. doi: 10.1016/S0267-7261(02)00156-2
    [28]
    SZE H Y, YANG J. Failure modes of sand in undrained cyclic loading: impact of sample preparation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(1): 152-169. doi: 10.1061/(ASCE)GT.1943-5606.0000971
    [29]
    ISHIBASHI I, CAPAR O F. Anisotropy and its relation to liquefaction resistance of granular material[J]. Soils and Foundations, 2003, 43(5): 149-159. doi: 10.3208/sandf.43.5_149
    [30]
    YU H, ZENG X, LI B, et al. Effect of fabric anisotropy on liquefaction of sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(5): 765-774. doi: 10.1061/(ASCE)GT.1943-5606.0000807
    [31]
    NI Q, TAN T S, DASARI G R, et al. Contribution of fines to the compressive strength of mixed soils[J]. Géotechnique, 2004, 54(9): 561-569. doi: 10.1680/geot.2004.54.9.561
    [32]
    WEI X, YANG J, ZHOU Y G, et al. Influence of particle-size disparity on cyclic liquefaction resistance of silty sands[J]. Géotechnique Letters, 2020, 10(2): 155-161. doi: 10.1680/jgele.19.00076
    [33]
    XU L Y, CAI F, CHEN W Y, et al. Undrained cyclic response of a dense saturated sand with various grain sizes and contents of nonplastic fines: experimental analysis and constitutive modeling[J]. Soil Dynamics and Earthquake Engineering, 2021, 145: 106727. doi: 10.1016/j.soildyn.2021.106727
    [34]
    YANG J, WEI L M, DAI B B. State variables for silty sands: global void ratio or skeleton void ratio?[J]. Soils and Foundations, 2015, 55(1): 99-111. doi: 10.1016/j.sandf.2014.12.008
    [35]
    顾晓强, 杨峻, 黄茂松, 等. 砂土剪切模量测定的弯曲元、共振柱和循环扭剪试验[J]. 岩土工程学报, 2016, 38(4): 740-746. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract16545.shtml

    GU Xiaoqiang, YANG Jun, HUANG Maosong, et al. Combining bender element, resonant column and cyclic torsional shear tests to determine small strain shear modulus of sand[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 740-746. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract16545.shtml
    [36]
    YANG J, GU X Q. Shear stiffness of granular material at small strains: does it depend on grain size?[J]. Géotechnique, 2013, 63(2): 165-179. doi: 10.1680/geot.11.P.083
    [37]
    BOLTON SEED H, TOKIMATSU K, HARDER L F, et al. Influence of SPT procedures in soil liquefaction resistance evaluations[J]. Journal of Geotechnical Engineering, 1985, 111(12): 1425-1445. doi: 10.1061/(ASCE)0733-9410(1985)111:12(1425)
    [38]
    XU L Y, ZHANG J Z, CAI F, et al. Constitutive modeling the undrained behaviors of sands with non-plastic fines under monotonic and cyclic loading[J]. Soil Dynamics and Earthquake Engineering, 2019, 123: 413-424. doi: 10.1016/j.soildyn.2019.05.021
    [39]
    CHANEY R C, DEMARS K R, LADE P V, et al. Effects of non-plastic fines on minimum and maximum void ratios of sand[J]. Geotechnical Testing Journal, 1998, 21(4): 336. doi: 10.1520/GTJ11373J
    [40]
    CUBRINOVSKI M, ISHIHARA K. Empirical correlation between SPT N-Value and relative density for sandy soils[J]. Soils and Foundations, 1999, 39(5): 61-71. doi: 10.3208/sandf.39.5_61
    [41]
    YILMAZ Y, MOLLAMAHMUTOGLU M. Characterization of liquefaction susceptibility of sands by means of extreme void ratios and/or void ratio range[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(12): 1986-1990. doi: 10.1061/(ASCE)GT.1943-5606.0000164
    [42]
    KIM U G, ZHUANG L, KIM D, et al. Evaluation of cyclic shear strength of mixtures with sand and different types of fines[J]. Marine Georesources & Geotechnology, 2017, 35(4): 447-455.
    [43]
    PORCINO D D, DIANO V. The influence of non-plastic fines on pore water pressure generation and undrained shear strength of sand-silt mixtures[J]. Soil Dynamics and Earthquake Engineering, 2017, 101: 311-321. doi: 10.1016/j.soildyn.2017.07.015

Catalog

    Article views (501) PDF downloads (183) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return