Citation: | LIU Jia, XUE Yi, GAO Feng, TENG Teng, LIANG Xin. Propagation of hydraulic fractures in bedded shale based on phase-field method[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(3): 464-473. DOI: 10.11779/CJGE202203008 |
[1] |
赵凯凯, 张镇, 李文洲, 等. 基于XSite的钻孔起裂水力裂缝三维扩展研究[J]. 岩土工程学报, 2021, 43(8): 1483–1491. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202108015.htm
ZHAO Kai-kai, ZHANG Zhen, LI Wen-zhou, et al. Three-dimensional simulation of hydraulic fracture from a borehole using XSite[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(8): 1483–1491. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202108015.htm
|
[2] |
刘武, 过申磊, 陆倩, 等. 基于TOUGHREACT的岩石水力损伤耦合数值模型研究[J]. 岩土工程学报, 2021, 43(7): 1306–1314, 1380. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202107021.htm
LIU Wu, GUO Shen-lei, LU Qian, et al. Numerical model for hydro-mechanical- damage coupling of rocks based on TOUGHREACT[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(7): 1306–1314, 1380. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202107021.htm
|
[3] |
FRANCFORT G A, MARIGO J J. Revisiting brittle fracture as an energy minimization problem[J]. Journal of the Mechanics and Physics of Solids, 1998, 46(8): 1319–1342. doi: 10.1016/S0022-5096(98)00034-9
|
[4] |
BOURDIN B, FRANCFORT G A, MARIGO J J. Numerical experiments in revisited brittle fracture[J]. Journal of the Mechanics and Physics of Solids, 2000, 48(4): 797–826. doi: 10.1016/S0022-5096(99)00028-9
|
[5] |
MIEHE C, WELSCHINGER F, HOFACKER M. Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field FE implementations[J]. International Journal for Numerical Methods in Engineering, 2010, 83(10): 1273–1311. doi: 10.1002/nme.2861
|
[6] |
AMBATI M, GERASIMOV T, LORENZIS L. A review on phase-field models of brittle fracture and a new fast hybrid formulation[J]. Computational Mechanics, 2015, 55(2): 383–405. doi: 10.1007/s00466-014-1109-y
|
[7] |
AMOR H, MARIGO J J, MAURINI C. Regularized formulation of the variational brittle fracture with unilateral contact: numerical experiments[J]. J Mech Phys Solids, 2009, 57: 1209–1229. doi: 10.1016/j.jmps.2009.04.011
|
[8] |
ZHOU S W, ZHUANG X Y, ZHU H H, et al. Phase field modelling of crack propagation, branching and coalescence in rocks[J]. Theoretical and Applied Fracture Mechanics, 2018, 96: 174–192. doi: 10.1016/j.tafmec.2018.04.011
|
[9] |
张豪, 于继东, 裴晓阳, 等. 相场断裂方法发展概况[J]. 高压物理学报, 2019, 33(3): 128–139.
ZHANG Hao, YU Ji-dong, PEI Xiao-yang, et al. An overview of phase field approach to fracture[J]. Chinese Journal of High Pressure Physics, 2019, 33(3): 128–139. (in Chinese)
|
[10] |
吴建营. 固体结构损伤破坏统一相场理论、算法和应用[J]. 力学学报, 2021, 53(2): 301–329. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202102001.htm
WU Jian-ying. On the theoretical and numerical aspects of the unified phase-field theory for damage and failure in solids and structures[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(2): 301–329. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202102001.htm
|
[11] |
NGUYEN T T, WALDMANN D, BUI T Q. Computational chemo-thermo-mechanical coupling phase-field model for complex fracture induced by early-age shrinkage and hydration heat in cement-based materials[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 348: 1–28. doi: 10.1016/j.cma.2019.01.012
|
[12] |
ZHUANG X Y, ZHOU S W. An experimental and numerical study on the influence of filling materials on double-crack propagation[J]. Rock Mechanics and Rock Engineering, 2020, 53(12): 5571–5591. doi: 10.1007/s00603-020-02220-1
|
[13] |
LIU J, XUE Y, CHEN W, et al. Variational phase-field model based on lower-dimensional interfacial element in FEM framework for investigating fracture behavior in layered rocks[J]. Engineering Fracture Mechanics, 2021, 255: 107962. doi: 10.1016/j.engfracmech.2021.107962
|
[14] |
ZHANG P, YAO W, HU X, et al. 3D micromechanical progressive failure simulation for fiber-reinforced composites[J]. Composite Structures, 2020, 249: 112534. doi: 10.1016/j.compstruct.2020.112534
|
[15] |
MIEHE C, MAUTHE S. Phase field modeling of fracture in multi-physics problems: part III crack driving forces in hydro-poro-elasticity and hydraulic fracturing of fluid-saturated porous media[J]. Computer Methods in Applied Mechanics and Engineering, 2016, 304: 619–655. doi: 10.1016/j.cma.2015.09.021
|
[16] |
SANTILLÁN D, JUANES R, CUETO-FELGUEROSO L. Phase field model of hydraulic fracturing in poroelastic media: fracture propagation, arrest, and branching under fluid injection and extraction[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(3): 2127–2155. doi: 10.1002/2017JB014740
|
[17] |
易良平, 胡滨, 李小刚, 等. 基于相场法的煤砂互层水力裂缝纵向延伸计算模型[J]. 煤炭学报, 2020, 45(增刊2): 706–716. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2020S2017.htm
YI Liang-ping, HU Bin, LI Xiao-gang, et al. Calculation model of hydraulic crack vertical propagation in coal-sand interbedded formation based on the phase field method[J]. Journal of China Coal Society, 2020, 45(S2): 706–716. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2020S2017.htm
|
[18] |
张飞. 基于自适应移动网格及相场逼近的水力裂缝延伸模拟[D]. 北京: 中国石油大学(北京), 2018.
ZHANG Fei. A Study on Adaptive Finite Element Solution of Phase-Field Models for Hydraulic Fracturing[D]. Beijing: China University of Petroleum (Beijing), 2018. (in Chinese)
|
[19] |
YI L, WAISMAN H, YANG Z, et al. A consistent phase field model for hydraulic fracture propagation in poroelastic media[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 372: 113396. doi: 10.1016/j.cma.2020.113396
|
[20] |
班宇鑫, 傅翔, 谢强, 等. 页岩巴西劈裂裂缝形态评价及功率谱特征分析[J]. 岩土工程学报, 2019, 41(12): 2307–2315. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201912023.htm
BAN Yu-xin, FU Xiang, XIE Qiang, et al. Evaluation of fracture morphology of shale in Brazilian tests and analysis of power spectral characteristics[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2307–2315. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201912023.htm
|
[21] |
侯冰, 陈勉, 张保卫, 等. 裂缝性页岩储层多级水力裂缝扩展规律研究[J]. 岩土工程学报, 2015, 37(6): 1041–1046. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201506011.htm
HOU Bing, CHEN Mian, ZHANG Bao-wei, et al. Propagation of multiple hydraulic fractures in fractured shale reservoir[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(6): 1041–1046. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201506011.htm
|
[22] |
侯冰, 武安安, 常智, 等. 页岩油储层多甜点压裂裂缝垂向扩展试验研究[J]. 岩土工程学报, 2021, 43(7): 1322–1330. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202107024.htm
HOU Bing, WU An-an, CHANG Zhi, et al. Experimental study on vertical propagation of fractures of multi-sweet of spots shale oil reservoir[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(7): 1322–1330. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202107024.htm
|
[23] |
MIEHE C, HOFACKER M, WELSCHINGER F. A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits[J]. Computer Methods in Applied Mechanics and Engineering, 2010, 199(45-48): 2765–2778. doi: 10.1016/j.cma.2010.04.011
|
[24] |
ZHOU S W, ZHUANG X Y, RABCZUK T. A phase-field modeling approach of fracture propagation in poroelastic media[J]. Engineering Geology, 2018, 240: 189–203. doi: 10.1016/j.enggeo.2018.04.008
|
[25] |
LEE S, WHEELER M F, WICK T. Pressure and fluid-driven fracture propagation in porous media using an adaptive finite element phase field model[J]. Computer Methods in Applied Mechanics and Engineering, 2016, 305: 111–132. doi: 10.1016/j.cma.2016.02.037
|
[26] |
BORDEN M J, VERHOOSEL C V, SCOTT M A, et al. A phase-field description of dynamic brittle fracture[J]. Computer Methods in Applied Mechanics and Engineering, 2012, 217~220: 77–95.
|
[27] |
JIAO Y Y, ZHANG H Q, ZHANG X L, et al. A two-dimensional coupled hydromechanical discontinuum model for simulating rock hydraulic fracturing[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2015, 39(5): 457–481. doi: 10.1002/nag.2314
|
[28] |
LI K C, ZHOU S W. Numerical investigation of multizone hydraulic fracture propagation in porous media: new insights from a phase field method[J]. Journal of Natural Gas Science and Engineering, 2019, 66: 42–59.
|
[29] |
ZHANG Q, ZHANG X, JI P. Numerical study of interaction between a hydraulic fracture and a weak plane using the bonded-particle model based on moment tensors[J]. Computers and Geotechnics, 2019, 105: 79–93.
|
[30] |
侯鹏, 高峰, 杨玉贵, 等. 黑色页岩巴西劈裂破坏的层理效应研究及能量分析[J]. 岩土工程学报, 2016, 38(5): 930–937. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201605020.htm
HOU Peng, GAO Feng, YANG Yu-gui, et al. Effect of bedding orientation on failure of black shale under Brazilian tests and energy analysis[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(5): 930–937. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201605020.htm
|
1. |
薛熠,杨博鹍,刘勇,孙强,张云,曹正正. 液氮循环冷冲击作用下高温花岗岩Ⅰ型断裂特性研究. 岩土力学. 2025(02): 422-436 .
![]() | |
2. |
石光. 马堡煤业高压水力压裂冲孔工业试验分析. 煤. 2024(03): 1-4+30 .
![]() | |
3. |
王博,王乾任,周航,张荔,解子祺. 层理影响下裂缝三维垂向扩展模式数值模拟. 新疆石油天然气. 2024(01): 77-87 .
![]() | |
4. |
吕茂淋,朱珍德,周露明,葛鑫梁. 基于相场法的预制双裂隙岩体水力压裂扩展数值模拟研究. 岩土力学. 2024(06): 1850-1862 .
![]() | |
5. |
王扬淋,王俣,刘思佳,寇苗苗. 基于相场法的水-力耦合作用下裂隙岩体变形破坏机理. 土木与环境工程学报(中英文). 2024(05): 211-220 .
![]() | |
6. |
郭建春,唐堂,张涛,周航宇,刘彧轩,李明峰,杨若愚. 深层页岩压裂多级裂缝内支撑剂运移与分布规律. 天然气工业. 2024(07): 1-11 .
![]() | |
7. |
刘先珊,钱磊,李满,潘玉华,苏仁斌. 层理面遇天然裂隙的页岩储层水力裂缝网络复杂性研究. 工程地质学报. 2024(04): 1309-1321 .
![]() | |
8. |
余前港,荣双,毛国扬,崔连文,彭根博,向传刚,王旭. 阳春沟区块页岩气超临界CO_2增能压裂研究与应用. 石油与天然气化工. 2024(05): 77-83 .
![]() | |
9. |
吕志涛,吴明超,段君义,黄雍. 冻结岩体裂隙冻胀扩展的相场法模拟. 岩土工程学报. 2023(11): 2258-2267 .
![]() | |
10. |
王世斌,王刚,陈雪畅,范酒源,迟利辉. 基于PFC~(2D)-COMSOL的煤层水力压裂增透促抽瓦斯数值模拟研究. 煤矿安全. 2022(10): 132-140 .
![]() |