• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LIU Jia, XUE Yi, GAO Feng, TENG Teng, LIANG Xin. Propagation of hydraulic fractures in bedded shale based on phase-field method[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(3): 464-473. DOI: 10.11779/CJGE202203008
Citation: LIU Jia, XUE Yi, GAO Feng, TENG Teng, LIANG Xin. Propagation of hydraulic fractures in bedded shale based on phase-field method[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(3): 464-473. DOI: 10.11779/CJGE202203008

Propagation of hydraulic fractures in bedded shale based on phase-field method

More Information
  • Received Date: March 06, 2021
  • Available Online: September 22, 2022
  • Accurate prediction of the propagation path of hydraulic fractures in shale plays an important role in optimizing fracturing schemes and evaluating fracturing effects. Based on the theory of poroelasticity and the energy minimization principle, a hydro-mechanical coupling phase-field model is established. The segregated coupling method based on the staggered scheme is adopted to solve it numerically. The reliability of the model is verified by the existing experimental results. The simulation analysis of 3D hydraulic fracturing confirms the feasibility of the proposed method in capturing the propagation path of hydraulic fractures under different in-situ stress configurations. Based on the model, the mechanical and seepage parameters of bedding planes and matrix are characterized by the interpolation function. The interactions among hydraulic fractures, natural fractures and bedding planes are investigated under different bedding angles and in-situ stress configurations. The results show that the bedding planes of shale alter the expected propagation path of hydraulic fractures, which depends on the bedding angle. With the increase of in-situ stress difference, the propagation path of hydraulic fractures and the interaction mode are gradually controlled by the in-situ stress difference. Compared with other numerical methods, the phase-field method has a significant advantage in simulating complex crack propagation and interaction in coupled multiphysics environment.
  • [1]
    赵凯凯, 张镇, 李文洲, 等. 基于XSite的钻孔起裂水力裂缝三维扩展研究[J]. 岩土工程学报, 2021, 43(8): 1483–1491. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202108015.htm

    ZHAO Kai-kai, ZHANG Zhen, LI Wen-zhou, et al. Three-dimensional simulation of hydraulic fracture from a borehole using XSite[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(8): 1483–1491. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202108015.htm
    [2]
    刘武, 过申磊, 陆倩, 等. 基于TOUGHREACT的岩石水力损伤耦合数值模型研究[J]. 岩土工程学报, 2021, 43(7): 1306–1314, 1380. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202107021.htm

    LIU Wu, GUO Shen-lei, LU Qian, et al. Numerical model for hydro-mechanical- damage coupling of rocks based on TOUGHREACT[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(7): 1306–1314, 1380. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202107021.htm
    [3]
    FRANCFORT G A, MARIGO J J. Revisiting brittle fracture as an energy minimization problem[J]. Journal of the Mechanics and Physics of Solids, 1998, 46(8): 1319–1342. doi: 10.1016/S0022-5096(98)00034-9
    [4]
    BOURDIN B, FRANCFORT G A, MARIGO J J. Numerical experiments in revisited brittle fracture[J]. Journal of the Mechanics and Physics of Solids, 2000, 48(4): 797–826. doi: 10.1016/S0022-5096(99)00028-9
    [5]
    MIEHE C, WELSCHINGER F, HOFACKER M. Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field FE implementations[J]. International Journal for Numerical Methods in Engineering, 2010, 83(10): 1273–1311. doi: 10.1002/nme.2861
    [6]
    AMBATI M, GERASIMOV T, LORENZIS L. A review on phase-field models of brittle fracture and a new fast hybrid formulation[J]. Computational Mechanics, 2015, 55(2): 383–405. doi: 10.1007/s00466-014-1109-y
    [7]
    AMOR H, MARIGO J J, MAURINI C. Regularized formulation of the variational brittle fracture with unilateral contact: numerical experiments[J]. J Mech Phys Solids, 2009, 57: 1209–1229. doi: 10.1016/j.jmps.2009.04.011
    [8]
    ZHOU S W, ZHUANG X Y, ZHU H H, et al. Phase field modelling of crack propagation, branching and coalescence in rocks[J]. Theoretical and Applied Fracture Mechanics, 2018, 96: 174–192. doi: 10.1016/j.tafmec.2018.04.011
    [9]
    张豪, 于继东, 裴晓阳, 等. 相场断裂方法发展概况[J]. 高压物理学报, 2019, 33(3): 128–139.

    ZHANG Hao, YU Ji-dong, PEI Xiao-yang, et al. An overview of phase field approach to fracture[J]. Chinese Journal of High Pressure Physics, 2019, 33(3): 128–139. (in Chinese)
    [10]
    吴建营. 固体结构损伤破坏统一相场理论、算法和应用[J]. 力学学报, 2021, 53(2): 301–329. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202102001.htm

    WU Jian-ying. On the theoretical and numerical aspects of the unified phase-field theory for damage and failure in solids and structures[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(2): 301–329. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202102001.htm
    [11]
    NGUYEN T T, WALDMANN D, BUI T Q. Computational chemo-thermo-mechanical coupling phase-field model for complex fracture induced by early-age shrinkage and hydration heat in cement-based materials[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 348: 1–28. doi: 10.1016/j.cma.2019.01.012
    [12]
    ZHUANG X Y, ZHOU S W. An experimental and numerical study on the influence of filling materials on double-crack propagation[J]. Rock Mechanics and Rock Engineering, 2020, 53(12): 5571–5591. doi: 10.1007/s00603-020-02220-1
    [13]
    LIU J, XUE Y, CHEN W, et al. Variational phase-field model based on lower-dimensional interfacial element in FEM framework for investigating fracture behavior in layered rocks[J]. Engineering Fracture Mechanics, 2021, 255: 107962. doi: 10.1016/j.engfracmech.2021.107962
    [14]
    ZHANG P, YAO W, HU X, et al. 3D micromechanical progressive failure simulation for fiber-reinforced composites[J]. Composite Structures, 2020, 249: 112534. doi: 10.1016/j.compstruct.2020.112534
    [15]
    MIEHE C, MAUTHE S. Phase field modeling of fracture in multi-physics problems: part III crack driving forces in hydro-poro-elasticity and hydraulic fracturing of fluid-saturated porous media[J]. Computer Methods in Applied Mechanics and Engineering, 2016, 304: 619–655. doi: 10.1016/j.cma.2015.09.021
    [16]
    SANTILLÁN D, JUANES R, CUETO-FELGUEROSO L. Phase field model of hydraulic fracturing in poroelastic media: fracture propagation, arrest, and branching under fluid injection and extraction[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(3): 2127–2155. doi: 10.1002/2017JB014740
    [17]
    易良平, 胡滨, 李小刚, 等. 基于相场法的煤砂互层水力裂缝纵向延伸计算模型[J]. 煤炭学报, 2020, 45(增刊2): 706–716. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2020S2017.htm

    YI Liang-ping, HU Bin, LI Xiao-gang, et al. Calculation model of hydraulic crack vertical propagation in coal-sand interbedded formation based on the phase field method[J]. Journal of China Coal Society, 2020, 45(S2): 706–716. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2020S2017.htm
    [18]
    张飞. 基于自适应移动网格及相场逼近的水力裂缝延伸模拟[D]. 北京: 中国石油大学(北京), 2018.

    ZHANG Fei. A Study on Adaptive Finite Element Solution of Phase-Field Models for Hydraulic Fracturing[D]. Beijing: China University of Petroleum (Beijing), 2018. (in Chinese)
    [19]
    YI L, WAISMAN H, YANG Z, et al. A consistent phase field model for hydraulic fracture propagation in poroelastic media[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 372: 113396. doi: 10.1016/j.cma.2020.113396
    [20]
    班宇鑫, 傅翔, 谢强, 等. 页岩巴西劈裂裂缝形态评价及功率谱特征分析[J]. 岩土工程学报, 2019, 41(12): 2307–2315. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201912023.htm

    BAN Yu-xin, FU Xiang, XIE Qiang, et al. Evaluation of fracture morphology of shale in Brazilian tests and analysis of power spectral characteristics[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2307–2315. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201912023.htm
    [21]
    侯冰, 陈勉, 张保卫, 等. 裂缝性页岩储层多级水力裂缝扩展规律研究[J]. 岩土工程学报, 2015, 37(6): 1041–1046. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201506011.htm

    HOU Bing, CHEN Mian, ZHANG Bao-wei, et al. Propagation of multiple hydraulic fractures in fractured shale reservoir[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(6): 1041–1046. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201506011.htm
    [22]
    侯冰, 武安安, 常智, 等. 页岩油储层多甜点压裂裂缝垂向扩展试验研究[J]. 岩土工程学报, 2021, 43(7): 1322–1330. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202107024.htm

    HOU Bing, WU An-an, CHANG Zhi, et al. Experimental study on vertical propagation of fractures of multi-sweet of spots shale oil reservoir[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(7): 1322–1330. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202107024.htm
    [23]
    MIEHE C, HOFACKER M, WELSCHINGER F. A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits[J]. Computer Methods in Applied Mechanics and Engineering, 2010, 199(45-48): 2765–2778. doi: 10.1016/j.cma.2010.04.011
    [24]
    ZHOU S W, ZHUANG X Y, RABCZUK T. A phase-field modeling approach of fracture propagation in poroelastic media[J]. Engineering Geology, 2018, 240: 189–203. doi: 10.1016/j.enggeo.2018.04.008
    [25]
    LEE S, WHEELER M F, WICK T. Pressure and fluid-driven fracture propagation in porous media using an adaptive finite element phase field model[J]. Computer Methods in Applied Mechanics and Engineering, 2016, 305: 111–132. doi: 10.1016/j.cma.2016.02.037
    [26]
    BORDEN M J, VERHOOSEL C V, SCOTT M A, et al. A phase-field description of dynamic brittle fracture[J]. Computer Methods in Applied Mechanics and Engineering, 2012, 217~220: 77–95.
    [27]
    JIAO Y Y, ZHANG H Q, ZHANG X L, et al. A two-dimensional coupled hydromechanical discontinuum model for simulating rock hydraulic fracturing[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2015, 39(5): 457–481. doi: 10.1002/nag.2314
    [28]
    LI K C, ZHOU S W. Numerical investigation of multizone hydraulic fracture propagation in porous media: new insights from a phase field method[J]. Journal of Natural Gas Science and Engineering, 2019, 66: 42–59.
    [29]
    ZHANG Q, ZHANG X, JI P. Numerical study of interaction between a hydraulic fracture and a weak plane using the bonded-particle model based on moment tensors[J]. Computers and Geotechnics, 2019, 105: 79–93.
    [30]
    侯鹏, 高峰, 杨玉贵, 等. 黑色页岩巴西劈裂破坏的层理效应研究及能量分析[J]. 岩土工程学报, 2016, 38(5): 930–937. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201605020.htm

    HOU Peng, GAO Feng, YANG Yu-gui, et al. Effect of bedding orientation on failure of black shale under Brazilian tests and energy analysis[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(5): 930–937. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201605020.htm
  • Cited by

    Periodical cited type(10)

    1. 薛熠,杨博鹍,刘勇,孙强,张云,曹正正. 液氮循环冷冲击作用下高温花岗岩Ⅰ型断裂特性研究. 岩土力学. 2025(02): 422-436 .
    2. 石光. 马堡煤业高压水力压裂冲孔工业试验分析. 煤. 2024(03): 1-4+30 .
    3. 王博,王乾任,周航,张荔,解子祺. 层理影响下裂缝三维垂向扩展模式数值模拟. 新疆石油天然气. 2024(01): 77-87 .
    4. 吕茂淋,朱珍德,周露明,葛鑫梁. 基于相场法的预制双裂隙岩体水力压裂扩展数值模拟研究. 岩土力学. 2024(06): 1850-1862 .
    5. 王扬淋,王俣,刘思佳,寇苗苗. 基于相场法的水-力耦合作用下裂隙岩体变形破坏机理. 土木与环境工程学报(中英文). 2024(05): 211-220 .
    6. 郭建春,唐堂,张涛,周航宇,刘彧轩,李明峰,杨若愚. 深层页岩压裂多级裂缝内支撑剂运移与分布规律. 天然气工业. 2024(07): 1-11 .
    7. 刘先珊,钱磊,李满,潘玉华,苏仁斌. 层理面遇天然裂隙的页岩储层水力裂缝网络复杂性研究. 工程地质学报. 2024(04): 1309-1321 .
    8. 余前港,荣双,毛国扬,崔连文,彭根博,向传刚,王旭. 阳春沟区块页岩气超临界CO_2增能压裂研究与应用. 石油与天然气化工. 2024(05): 77-83 .
    9. 吕志涛,吴明超,段君义,黄雍. 冻结岩体裂隙冻胀扩展的相场法模拟. 岩土工程学报. 2023(11): 2258-2267 . 本站查看
    10. 王世斌,王刚,陈雪畅,范酒源,迟利辉. 基于PFC~(2D)-COMSOL的煤层水力压裂增透促抽瓦斯数值模拟研究. 煤矿安全. 2022(10): 132-140 .

    Other cited types(16)

Catalog

    Article views (291) PDF downloads (403) Cited by(26)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return