Citation: | ZHANG Yu, WANG Peng-sheng, LI Da-yong, ZHANG Yu-kun, WEI Kai. Numerical simulation method for hydraulic fracture pressure of perforated surrounding rock under hydraulic coupling[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(3): 409-419. DOI: 10.11779/CJGE202203002 |
[1] |
LI M, GUO P J, STOLLE D, et al. Development of hydraulic fracture zone in heterogeneous material based on smeared crack method[J]. Journal of Natural Gas Science and Engineering, 2016, 35: 761–774. doi: 10.1016/j.jngse.2016.09.018
|
[2] |
WANG Z C, BI L P, KWON S, et al. The effects of hydro-mechanical coupling in fractured rock mass on groundwater inflow into underground openings[J]. Tunnelling and Underground Space Technology, 2020, 103: 103489. doi: 10.1016/j.tust.2020.103489
|
[3] |
秦勇, 申建. 论深部煤层气基本地质问题[J]. 石油学报, 2016, 37(1): 125–136. doi: 10.3969/j.issn.1001-8719.2016.01.017
QING Yong, SHENG Jian. On the fundamental issues of deep coalbed methane geology[J]. Acta Petrolei Sinica, 2016, 37(1): 125–136. (in Chinese) doi: 10.3969/j.issn.1001-8719.2016.01.017
|
[4] |
FU P, JOHNSON S M, CARRIGAN C R. An explicitly coupled hydro-geomechanical model for simulating hydraulic fracturing in arbitrary discrete fracture networks[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2013, 37(14): 2278–2300. doi: 10.1002/nag.2135
|
[5] |
张建光, 李湘萍, 王传睿, 等. 页岩气藏水力压裂中应力–流压耦合效应及人工裂缝扩展规律[J]. 中国石油大学学报(自然科学版), 2018, 42(6): 96–105. doi: 10.3969/j.issn.1673-5005.2018.06.011
ZHANG Jian-guang, LI Xiang-ping, WANG Chuan-rui, et al. Numerical simulation of rock formation stress-fluid pressure coupling and development of artificial fractures during hydraulic fracturing of shale gas reservoirs[J]. Journal of China University of Petroleum(Edition of Natural Science), 2018, 42(6): 96–105. (in Chinese) doi: 10.3969/j.issn.1673-5005.2018.06.011
|
[6] |
陈勉, 陈治喜, 黄荣樽. 大斜度井水压裂缝破裂研究[J]. 石油大学学报(自然科学版), 1995, 19(2): 30–35.
CHEN Mian, CHEN Zhi-xi, HUANG Rong-zun. Hydraulic fracturing of highly deviated wells[J]. Journal of University of Petroleum (Natural Science), 1995, 19(2): 30–35. (in Chinese)
|
[7] |
朱海燕, 邓金根, 刘书杰, 等. 定向射孔水力压裂破裂压力的预测模型[J]. 石油学报, 2013, 34(3): 556–562. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201303023.htm
ZHU Hai-yan, DENG Jin-gen, LIU Shu-jie, et al. A prediction model of the hydraulic fracture initiation pressure in oriented perforation[J]. Acta Petrolei Sinica, 2013, 34(3): 556–562. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201303023.htm
|
[8] |
KING H M, DAVID G W. Mechanics of hydraulic fracturing[J]. Transactions of the AIME, 1957, 210(1): 153–168. doi: 10.2118/686-G
|
[9] |
HAIMSON B, FAIRHURST C. Initiation and extension of hydraulic fractures in rocks[J]. Society of Petroleum Engineers Journal, 1967, 7(3): 310–318. doi: 10.2118/1710-PA
|
[10] |
任岚, 赵金洲, 胡永全, 等. 水力压裂时岩石破裂压力数值计算[J]. 岩石力学与工程学报, 2009, 28(增刊2): 3427–3422. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2009S2022.htm
REN Lan, ZHAO Jin-zhou, HU Yong-quan, et al. Numerical calculation of rock breakdown pressure during hydraulic fracturing process[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(S2): 3417–3422. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2009S2022.htm
|
[11] |
王六鹏, 李琪, 张绍云, 等. 基于约束优化方法的水力压裂破裂压力计算模型[J]. 西安石油大学学报(自然科学版), 2014, 29(1): 49–51. doi: 10.3969/j.issn.1673-064X.2014.01.009
WANG Liu-peng, LI Qi, ZHANG Shao-yun, et al. Calculation model for hydraulic fracture initiation pressure based on constraint optimization method[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2014, 29(1): 49–51. (in Chinese) doi: 10.3969/j.issn.1673-064X.2014.01.009
|
[12] |
郭天魁, 张士诚, 刘卫来, 等. 页岩储层射孔水平井分段压裂的破裂压力[J]. 天然气工业, 2013, 33(12): 1–6.
GUO Tian-kui, ZHANG Shi-cheng, LIU Wei-lai, et al. Initiation pressure of multi-stage fracking for perforated horizontal wells of shale gas reservoirs[J]. Natural Gas Industry, 2013, 33(12): 1–6. (in Chinese)
|
[13] |
李传亮, 孔祥言. 油井压裂过程中岩石破裂压力计算公式的理论研究[J]. 石油钻采工艺, 2000, 22(2): 54–56. doi: 10.3969/j.issn.1000-7393.2000.02.014
LI Chuan-liang, KONG Xiang-yan. A theoretical study on rock breakdown pressure calculation equations of fracturing process[J]. Oil Drilling and Production Technology, 2000, 22(2): 54–56. (in Chinese) doi: 10.3969/j.issn.1000-7393.2000.02.014
|
[14] |
李传亮. 射孔完井条件下的岩石破裂压力计算公式[J]. 石油钻采工艺, 2002, 24(2): 37–38. doi: 10.3969/j.issn.1000-7393.2002.02.024
LI Chuan-liang. Rock breakdown pressure calculation equations for perforated wells[J]. Oil Drilling & Production Technology, 2002, 24(2): 37–38. (in Chinese) doi: 10.3969/j.issn.1000-7393.2002.02.024
|
[15] |
杨兆中, 刘云锐, 张平, 等. 煤层气直井地层破裂压力计算模型[J]. 石油学报, 2018, 39(5): 578–586. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201805009.htm
YANG Zhao-zhong, LIU Yun-rui, ZHANG Ping, et al. A model for calculating formation breakdown pressure in CBM vertical wells[J]. Acta Petrolei Sinica, 2018, 39(5): 578–586. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201805009.htm
|
[16] |
LLANOS E M, JEFFREY R G, HILLIS R, et al. Hydraulic fracture propagation through an orthogonal discontinuity: a laboratory, analytical and numerical study[J]. Rock Mechanics and Rock Engineering, 2017, 50(8): 2101–2118. doi: 10.1007/s00603-017-1213-3
|
[17] |
ZENG Q D, LIU W Z, YAO J. Hydro-mechanical modeling of hydraulic fracture propagation based on embedded discrete fracture model and extended finite element method[J]. Journal of Petroleum Science and Engineering, 2018, 167: 64–77. doi: 10.1016/j.petrol.2018.03.086
|
[18] |
黄远智, 王恩志. 低渗透岩石渗透率与有效围压关系的实验研究[J]. 清华大学学报(自然科学版), 2007, 27(3): 340–343. doi: 10.3321/j.issn:1000-0054.2007.03.010
HUANG Yuan-zhi, WANG En-zhi. Experimental study of the laws between the effective confirming pressure and rock permeability[J]. Journal of Tsinghua University (Science and Technology), 2007, 27(3): 340–343. (in Chinese) doi: 10.3321/j.issn:1000-0054.2007.03.010
|
[19] |
卢家亭, 李闽. 低渗砂岩渗透率应力敏感性实验研究[J]. 天然气地球科学, 2007, 19(3): 339–341. doi: 10.3969/j.issn.1672-1926.2007.03.004
LU Jia-ting, LI Min. Experimental research on permeability sensitivity of low-permeability sand rock[J]. Natural Gas Geoscience, 2007, 19 (3): 339–341. (in Chinese) doi: 10.3969/j.issn.1672-1926.2007.03.004
|
[20] |
薛永超, 程林松. 不同级别渗透率岩心应力敏感实验对比研究[J]. 石油钻采工艺, 2011, 33(3): 38–41. doi: 10.3969/j.issn.1000-7393.2011.03.011
XUE Yong-chao, CHENG Lin-song. Experimental comparison study on stress sensitivity of different permeability cores[J]. Oil Drilling & Production Technology, 2011, 33(3): 38–41. (in Chinese) doi: 10.3969/j.issn.1000-7393.2011.03.011
|
[21] |
荣传新, 程桦. 地下水渗流对巷道围岩稳定性影响的理论解[J]. 岩石力学与工程学报, 2004, 23(5): 741–744. doi: 10.3321/j.issn:1000-6915.2004.05.007
RONG Chuan-xin, CHENG Hua. Stability analysis of rocks around tunnel with ground water permeation[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(5): 741–744. (in Chinese) doi: 10.3321/j.issn:1000-6915.2004.05.007
|
[22] |
李敬元, 李子丰. 渗流作用下井筒周围岩石内弹塑性应力分布规律及井壁稳定条件[J]. 工程力学, 1997, 14(1): 131–137. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX199701018.htm
LI Jing-yuan, LI Zi-feng. Rock elastic-plastic stresses around a wellbore and wellbore stability under permeation osmosis[J]. Engineering Mechanics, 1997, 14(1): 131–137. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX199701018.htm
|
[23] |
孔祥言. 高等渗流力学[M]. 合肥: 中国科学技术大学出版社, 1999.
KONG Xiang-yan. Advanced Mechanics of Fluids in Porous Media[M]. Hefei: University of Science and Technology of China Press, 1999. (in Chinese)
|
[24] |
TUPIN S, OHTA M. Assessing porous media permeability in non-darcy flow: a re-evaluation based on the forchheimer equation[J]. Materials, 2020, 13(11): 2535. doi: 10.3390/ma13112535
|
[25] |
许凯, 雷学文, 孟庆山, 等. 非达西渗流惯性系数研究[J]. 岩石力学与工程学报, 2012, 31(1): 164–170. doi: 10.3969/j.issn.1000-6915.2012.01.019
XU Kai, LIE Xue-wen, MENG Qing-shan, et al. Study of inertial coefficient of non-Darcy seepage flow[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(1): 164–170. (in Chinese) doi: 10.3969/j.issn.1000-6915.2012.01.019
|
[26] |
WU Z W, CUI C Z, TRIVEDI J, et al. Pressure analysis for volume fracturing vertical well considering low-velocity non-darcy flow and stress sensitivity[J]. Geofluids, 2019, 2046061.
|
[27] |
YANG D S, WANG W, LI K, et al. Experimental investigation on the stress sensitivity of permeability in naturally fractured shale[J]. Environmental Earth Sciences, 2019, 78(2): 1–10.
|
[28] |
马中高. Biot系数和岩石弹性模量的实验研究[J]. 石油与天然气地质, 2008, 29(1): 135–140. doi: 10.3321/j.issn:0253-9985.2008.01.021
MA Zhong-gao, Experimental investigation into Biot's coefficient and rock elastic moduli[J]. Oil & Gasgeology, 2008, 29(1): 135–140. (in Chinese) doi: 10.3321/j.issn:0253-9985.2008.01.021
|
[29] |
NUR A. Critical porosity and the seismic velocity in rocks[J]. Eos Transactions American Geophysical Union, 1992, 73(1): 43–46.
|
[30] |
LI B, WONG RCK, SINA H. A modified Kozeny-Carman model for estimating anisotropic permeability of soft mud rocks[J]. Marine and Petroleum Geology, 2018, 98: 356–368. doi: 10.1016/j.marpetgeo.2018.08.034
|
[31] |
HOSSAIN M M, RAHMAN M K, RAHMAN S S. Hydraulic fracture initiation and propagation: roles of wellbore trajectory, perforation and stress regimes[J]. Journal of Petroleum Science & Engineering, 2000, 27: 129–149.
|
[32] |
赵金洲, 任岚, 胡永全, 等. 裂缝性地层射孔井破裂压力计算模型[J]. 石油学报, 2012, 33(5): 841–845. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201205015.htm
ZHAO Jin-zhou, REN Lan, HU Yong-quan, et al. A calculation model of breakdown pressure for perforated wells in fractured formations[J]. Acta Petrolei Sinica, 2012, 33(5): 841–845. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201205015.htm
|
[33] |
谭维炎. 计算浅水动力学: 有限体积法的应用[M]. 北京: 清华大学出版社, 1998.
TAN Wei-yan. Computational Shallow Water Hydrodynamics: Application of the Finite Volume Method[M]. Beijing: Tsinghua University Press, 1998. (in Chinese)
|