Damage analysis method for mining rock mass based on microseismic-derived fractures and its engineering application
-
Graphical Abstract
-
Abstract
The progressive damage of rock masses under mining conditions will induce the initiation, development and connection of fractures, form water inrush channels, and finally induce water inrush disasters. This disastrous process involves fracture evolution and rock damage, making the water inrush disasters dynamic and complex. It is challenging to accurately interpret the evolution law of the water inrush channels in theory, which needs to rely on the field monitoring and numerical simulation. Therefore, from the theoretical point of view that "the main essence of microseismic (MS) phenomena is the propagation of fractures", an anisotropic damage model is established based on the MS data. This model is combined with FLAC3D numerical simulation analysis, which is expected to link macroscopic mechanical behavior of rock masses with fracture development. Finally, the research results are applied to the analysis of the water inrush channels of the grouting curtain in Zhangmatun Iron Mine. The damage process and the damage tensor of the instability zone are analyzed, the distribution of water inrush channels is determined, and the numerical model is established from the perspective of seepage-stress-damage. The characteristics of stress and plastic yield zone between curtain and stope are studied, and the characteristics and formation mechanism of the water inrush channels induced by mining are determined to provide help for the safe mining and water treatment design of mines.
-
-