• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHAO Yong, YANG Tian-hong, WANG Shu-hong, JIA Peng. Damage analysis method for mining rock mass based on microseismic-derived fractures and its engineering application[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(2): 305-314. DOI: 10.11779/CJGE202202012
Citation: ZHAO Yong, YANG Tian-hong, WANG Shu-hong, JIA Peng. Damage analysis method for mining rock mass based on microseismic-derived fractures and its engineering application[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(2): 305-314. DOI: 10.11779/CJGE202202012

Damage analysis method for mining rock mass based on microseismic-derived fractures and its engineering application

More Information
  • Received Date: January 12, 2021
  • Available Online: September 22, 2022
  • The progressive damage of rock masses under mining conditions will induce the initiation, development and connection of fractures, form water inrush channels, and finally induce water inrush disasters. This disastrous process involves fracture evolution and rock damage, making the water inrush disasters dynamic and complex. It is challenging to accurately interpret the evolution law of the water inrush channels in theory, which needs to rely on the field monitoring and numerical simulation. Therefore, from the theoretical point of view that "the main essence of microseismic (MS) phenomena is the propagation of fractures", an anisotropic damage model is established based on the MS data. This model is combined with FLAC3D numerical simulation analysis, which is expected to link macroscopic mechanical behavior of rock masses with fracture development. Finally, the research results are applied to the analysis of the water inrush channels of the grouting curtain in Zhangmatun Iron Mine. The damage process and the damage tensor of the instability zone are analyzed, the distribution of water inrush channels is determined, and the numerical model is established from the perspective of seepage-stress-damage. The characteristics of stress and plastic yield zone between curtain and stope are studied, and the characteristics and formation mechanism of the water inrush channels induced by mining are determined to provide help for the safe mining and water treatment design of mines.
  • [1]
    杨天鸿, 唐春安, 谭志宏, 等. 岩体破坏突水模型研究现状及突水预测预报研究发展趋势[J]. 岩石力学与工程学报, 2007, 26(2): 268–277. doi: 10.3321/j.issn:1000-6915.2007.02.007

    YANG Tian-hong, TANG Chun-an, TAN Zhi-hong, et al. State of the art of inrush models in rock mass failure and developing trend for prediction and forecast of groundwater inrush[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(2): 268–277. (in Chinese) doi: 10.3321/j.issn:1000-6915.2007.02.007
    [2]
    刘超, 吴顺川, 程爱平, 等. 采动条件下底板潜在导水通道形成的微震监测与数值模拟[J]. 北京科技大学学报, 2014, 36(9): 1129–1135. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201409001.htm

    LIU Chao, WU Shun-chuan, CHENG Ai-ping, et al. Microseismic monitoring and numerical simulation of the formation of water inrush pathway caused by coal mining[J]. Journal of University of Science and Technology Beijing, 2014, 36(9): 1129–1135. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201409001.htm
    [3]
    姜福兴. 微震监测技术在矿井岩层破裂监测中的应用[J]. 岩土工程学报, 2002, 24(2): 147–149. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200202003.htm

    JIANG Fu-xing. Application of microseismic monitoring technology of strata fracturing in underground coal mine[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(2): 147–149. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200202003.htm
    [4]
    庄端阳, 唐春安, 梁正召, 等. 基于微震能量演化的大岗山右岸边坡抗剪洞加固效果研究[J]. 岩土工程学报, 2017, 39(5): 868–878. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201705014.htm

    ZHUANG Duan-yang, TANG Chun-an, LIANG Zheng-zhao, et al. Reinforcement effect of anti-shear tunnels of Dagangshan right bank slope based on microseismic energy evolution[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(5): 868–878. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201705014.htm
    [5]
    钱波, 杨莹, 徐奴文, 等. 白鹤滩水电站左岸边坡岩石损伤变形反馈分析[J]. 岩土工程学报, 2019, 41(8): 1464–1471. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201908013.htm

    QIAN Bo, YANG Ying, XU Nu-wen, et al. Feedback analysis of rock damage deformation of slope at left bank of Baihetan Hydropower Station[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(8): 1464–1471. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201908013.htm
    [6]
    YOUNG R P, COLLINS D S, REYES-MONTES J M, et al. Quantification and interpretation of seismicity[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(8): 1317–1327. doi: 10.1016/j.ijrmms.2004.09.004
    [7]
    XU N W, DAI F, LIANG Z Z, et al. The dynamic evaluation of rock slope stability considering the effects of microseismic damage[J]. Rock Mechanics and Rock Engineering, 2014, 47(2): 621–642. doi: 10.1007/s00603-013-0432-5
    [8]
    ZHAO Y, YANG T H, YU Q L, et al. Dynamic reduction of rock mass mechanical parameters based on numerical simulation and microseismic data-A case study[J]. Tunnelling and Underground Space Technology, 2019, 83: 437–451. doi: 10.1016/j.tust.2018.09.018
    [9]
    CANDELA T, WASSING B, TER HEEGE J, et al. How earthquakes are induced[J]. Science, 2018, 360(6389): 598–600. doi: 10.1126/science.aat2776
    [10]
    明华军, 冯夏庭, 张传庆, 等. 基于微震信息的硬岩新生破裂面方位特征矩张量分析[J]. 岩土力学, 2013, 34(6): 1716–1722. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201306030.htm

    MING Hua-jun, FENG Xia-ting, ZHANG Chuan-qing, et al. Moment tensor analysis of attitude characterization of hard rock newborn fracture surface based on microseismic informations[J]. Rock and Soil Mechanics, 2013, 34(6): 1716–1722. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201306030.htm
    [11]
    GILBERT F. Excitation of the normal modes of the earth by earthquake sources[J]. Geophysical Journal of the Royal Astronomical Society, 1971, 22(2): 223–226. doi: 10.1111/j.1365-246X.1971.tb03593.x
    [12]
    BACKUS G, MULCAHY M. Moment tensors and other phenomenological descriptions of seismic sources Ⅱ. Discontinuous displacements[J]. Geophysical Journal of the Royal Astronomical Society, 1976, 47(2): 301–329. doi: 10.1111/j.1365-246X.1976.tb01275.x
    [13]
    STIERLE E, VAVRYČUK V, ŠÍLENÝ J, et al. Resolution of non-double-couple components in the seismic moment tensor using regional networks Ⅰ: a synthetic case study[J]. Geophysical Journal International, 2014, 196(3): 1869–1877. doi: 10.1093/gji/ggt502
    [14]
    李庶林, 林恺帆, 周梦婧, 等. 基于矩张量分析的特大山体破坏前兆孕震机制研究[J]. 岩石力学与工程学报, 2019, 38(10): 2000–2009. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201910007.htm

    LI Shu-lin, LIN Kai-fan, ZHOU Meng-jing, et al. Study on failure precursors and seismogenic mechanisms of a large landslide based on moment tensor analysis[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(10): 2000–2009. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201910007.htm
    [15]
    王笑然, 李楠, 王恩元, 等. 岩石裂纹扩展微观机制声发射定量反演[J]. 地球物理学报, 2020, 63(7): 2627–2643. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202007013.htm

    WANG Xiao-ran, LI Nan, WANG En-yuan, et al. Microcracking mechanisms of sandstone from acoustic emission source inversion[J]. Chinese Journal of Geophysics, 2020, 63(7): 2627–2643. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202007013.htm
    [16]
    MARTÍNEZ-GARZÓN P, KWIATEK G, BOHNHOFF M, et al. Impact of fluid injection on fracture reactivation at The Geysers geothermal field[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(10): 7432–7449. doi: 10.1002/2016JB013137
    [17]
    AKI K, RICHARDS PG. Quantitative seismology, theory and methods[M]. New York: W. H. Freeman, 1980.
    [18]
    ZHAO Y, YANG T H, ZHANG P H, et al. Inversion of seepage channels based on mining-induced microseismic data[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 126: 104180. doi: 10.1016/j.ijrmms.2019.104180
    [19]
    YOUNG R P, MAXWELL S C, URBANCIC T I, et al. Mining-induced microseismicity: monitoring and applications of imaging and source mechanism techniques[J]. Pure and Applied Geophysics PAGEOPH, 1992, 139(3/4): 697–719.
    [20]
    ZHAO Y, YANG T H, ZHANG P H, et al. Method for generating a discrete fracture network from microseismic data and its application in analyzing the permeability of rock masses: a case study[J]. Rock Mechanics and Rock Engineering, 2019, 52(9): 3133–3155.
    [21]
    MENDECKI A J. Seismic monitoring systems[M]//Seismic Monitoring in Mines. Dordrecht: Springer Netherlands, 1997: 21–40.
    [22]
    KAWAMOTO T, ICHIKAWA Y, KYOYA T. Deformation and fracturing behaviour of discontinuous rock mass and damage mechanics theory[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1988, 12(1): 1-30.
    [23]
    韩伟伟, 李术才, 张庆松, 等. 矿山帷幕薄弱区综合分析方法研究[J]. 岩石力学与工程学报, 2013, 32(3): 512–519. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201303010.htm

    HAN Wei-wei, LI Shu-cai, ZHANG Qing-song, et al. A comprehensive analysis method for searching weak zones of grouting curtain in mines[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(3): 512–519. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201303010.htm
    [24]
    ZHOU J R, YANG T H, ZHANG P H, et al. Formation process and mechanism of seepage channels around grout curtain from microseismic monitoring: a case study of Zhangmatun iron mine, China[J]. Engineering Geology, 2017, 226: 301–315.

Catalog

    Article views (215) PDF downloads (106) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return