• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
YU Yong-tang, ZHENG Jian-guo, ZHANG Ji-wen, HUANG Xin, XU Wen-tao. Prediction of settlement based on fusion model of Kalman filter and exponential smoothing algorithm[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S1): 127-131. DOI: 10.11779/CJGE2021S1023
Citation: YU Yong-tang, ZHENG Jian-guo, ZHANG Ji-wen, HUANG Xin, XU Wen-tao. Prediction of settlement based on fusion model of Kalman filter and exponential smoothing algorithm[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S1): 127-131. DOI: 10.11779/CJGE2021S1023

Prediction of settlement based on fusion model of Kalman filter and exponential smoothing algorithm

More Information
  • Received Date: December 14, 2020
  • Available Online: December 05, 2022
  • It is difficult to predict the settlement trend and to assess the stability of the settlement due to the large fluctuation and strong discreteness of the settlement monitoring data with noise, and the parameters of the conventional prediction models cannot be updated with the latest data.In this study, a prediction method based on the fusion model of Kalman filter(KF)and exponential smoothing(ES)algorithm is proposed.The idea of this method is as follows: Firstly, the Kalman filter is used to process the original settlement data for three times of filtering and noise reduction.Secondly, the first, second and third processing values of the Kalman filter are replaced by the smoothing values of the same processing times of the exponential smoothing method, and the gain coefficient of Kalman filter is replaced by the smoothing coefficient of the third exponential smoothing method.Finally, the parameters of the cubic exponential smoothing method are calculated by using the replaced smoothing values and smoothing coefficients, and the prediction model is established and extrapolated.The test results show that the KF-ES fusion model can significantly reduce the random noise interference in settlement data and has the advantages of strong adaptability, good real-time prediction, and it is suitable for short-term dynamic prediction.
  • [1]
    刘射洪, 袁聚云, 赵昕. 地基沉降预测模型研究综述[J]. 工业建筑, 2014, 44(增刊1): 738-741, 681. doi: 10.13204/j.gyjz2014.s1.008

    LIU She-hong, YUAN Ju-yun, ZHAO Xin. Review of settlement prediction models of foundation[J]. Industrial Construction, 2014, 44(S1): 738-741, 681. (in Chinese) doi: 10.13204/j.gyjz2014.s1.008
    [2]
    徐洪钟, 施斌, 李雪红. 全过程沉降量预测的Logistic生长模型及其适用性研究[J]. 岩土力学, 2005, 26(3): 387-391. doi: 10.3969/j.issn.1000-7598.2005.03.010

    XU Hong-zhong, SHI Bin, LI Xue-hong. Logistic growth model and its applicability for predicting settlement during the whole process[J]. Rock and Soil Mechanics, 2005, 26(3): 387-391. (in Chinese) doi: 10.3969/j.issn.1000-7598.2005.03.010
    [3]
    余闯, 刘松玉. 路堤沉降预测的Gompertz模型应用研究[J]. 岩土力学, 2005, 26(1): 82-86. doi: 10.3969/j.issn.1000-7598.2005.01.017

    YU Chuang, LIU Song-yu. A Study on prediction of embankment settlement with the gompertz model[J]. Rock and Soil Mechanics, 2005, 26(1): 82-86. (in Chinese) doi: 10.3969/j.issn.1000-7598.2005.01.017
    [4]
    TAN T S, INOUE T, LEE S L. Hyperbolic method for consolidation analysis[J]. Journal of Geotechnical Engineering, 1991, 117(11): 1723-1737. doi: 10.1061/(ASCE)0733-9410(1991)117:11(1723)
    [5]
    ASAOKA A. Observational procedure of settlement prediction[J]. Soils and Foundations, 1978, 18(4): 87-101. doi: 10.3208/sandf1972.18.4_87
    [6]
    潘林有, 谢新宇. 用曲线拟合的方法预测软土地基沉降[J]. 岩土力学, 2004, 25(7): 1053-1058. doi: 10.3969/j.issn.1000-7598.2004.07.010

    PAN Linyou, XIE Xin-yu. Observational settlement prediction by curve fitting methods[J]. Rock and Soil Mechanics, 2004, 25(7): 1053-1058. (in Chinese) doi: 10.3969/j.issn.1000-7598.2004.07.010
    [7]
    肖衡林, 李丽华, 郭小川, 等. 山区高填方路堤沉降预测方法[J]. 应用基础与工程科学学报, 2015, 23(1): 154-161. https://www.cnki.com.cn/Article/CJFDTOTAL-YJGX201501014.htm

    XIAO Heng-lin, LI Li-hua, GUO Xiao-chuan, et al. Settlement predicted method of high filled embankment in mountain area[J]. Journal of Basic Science and Engineering, 2015, 23(1): 154-161. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YJGX201501014.htm
    [8]
    周俊, 马建林, 徐华, 等. EMD降噪在高速铁路路基沉降预测中的应用[J]. 振动与冲击, 2016, 35(8): 66-72. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201608011.htm

    ZHOU Jun, MA Jian-lin, XU Hua, et al. Application of EMD denoising method in subgrade settlement prediction of high-speed railways[J]. Journal of Vibration and Shock, 2016, 35(8): 66-72. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201608011.htm
    [9]
    KALMAN R. E. A new approach to linear filtering and prediction problems[J]. JournalofBasicEngineering Transactions, 1960, 82(1): 35-45.
    [10]
    PAUL Z., HOWARD M. Fundamentals of Kalman Filtering: A Practical Approach(3rd Edition)[M]. Reston: American Institute of Aeronautics&Astronautics, Inc., 2009: 41-90.
    [11]
    王利, 李亚红, 刘万林. 卡尔曼滤波在大坝动态变形监测数据处理中的应用[J]. 西安科技大学学报, 2006, 26(3): 353-357. doi: 10.3969/j.issn.1672-9315.2006.03.015

    WANG Li, LI Ya-hong, LIU Wan-lin. Application of Kalman filtering in data processing of dam dynamic deformation monitoring[J]. Journal of Xi'an University of Science and Technology, 2006, 26(3): 353-357. (in Chinese) doi: 10.3969/j.issn.1672-9315.2006.03.015
    [12]
    宋迎春. 动态定位中的卡尔曼滤波研究[D]. 长沙: 中南大学, 2006.

    SONG Ying-chun. Research on Kalman filter in kinematic positioning[D]. Changsha: Central South University, 2006. (in Chinese)
    [13]
    张德南, 张心艳. 指数平滑预测法中平滑系数的确定[J]. 大连铁道学院学报, 2004, 25(1): 79-80. https://www.cnki.com.cn/Article/CJFDTOTAL-DLTD200401021.htm

    ZHANG Denan, ZHANG Xin-yan. Ascertainment of index ievel and coefficient smooth[J]. Journal of Dalian Railway Institute, 2004, 25(1): 79-80. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DLTD200401021.htm
    [14]
    冯金巧, 杨兆升, 张林, 等. 一种自适应指数平滑动态预测模型[J]. 吉林大学学报(工学版), 2007, 37(6): 1284-1287. https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY200706012.htm

    FENG Jin-qiao, YANG Zhao-sheng, ZHANG Lin, et al. Adaptive exponential smoothing model for dynamicprediction[J]. JournalofJilinUniversity(Engineering and Technology Edition), 2007, 37(6): 1284-1287. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY200706012.htm
    [15]
    张嘉望, 郭军献, 李福松. 基于最优平滑系数三次指数平滑法的转速预测[J]. 探测与控制学报, 2015, 37(5): 43-46. https://www.cnki.com.cn/Article/CJFDTOTAL-XDYX201505010.htm

    ZHANG Jia-wang, GUO Jun-xian, LI Fu-song. Rotationspeedpredictionbasedoncubicexponential smoothing method[J]. Journal of Detection&Control, 2015, 37(5): 43-46. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDYX201505010.htm
  • Cited by

    Periodical cited type(8)

    1. 梁运培,李赏,李全贵,郭亚博,孙万杰,郑梦浩,王程成. 基于FEDformer-LGBM-AT架构的采煤工作面上隅角瓦斯浓度预测. 煤炭学报. 2025(01): 360-378 .
    2. 杨国俊,田里,唐光武,毛建博,杜永峰. D-S理论和Markov链组合的桥梁性能退化预测研究. 应用数学和力学. 2024(04): 416-428 .
    3. 张文松,贾磊,姚荣涵,孙立. 基于Self-CGRU模型的地铁基坑周边地表沉降预测. 岩土力学. 2024(08): 2474-2482+2491 .
    4. 杨华强,熊坚,张鹏,范宜静,韩冬阳,曹蕾,夏唐斌. 基于改进Croston方法的多需求模式零备件预测. 科学技术与工程. 2024(21): 8987-8995 .
    5. 殷文彦,李冠. 基于多源数据山区地质灾害监测预警应用. 北京测绘. 2024(10): 1459-1463 .
    6. 欧晓春,王勇超,杨佳玉. 基于长短期记忆网络模型的堆载作用厂房桩基长期沉降预测. 市政技术. 2023(05): 112-116+120 .
    7. 杨小权,刘曰木,刘江. 基于卡尔曼滤波与子带选取的轴承声信号增强方法. 机电工程. 2023(11): 1673-1681 .
    8. Xiaokun Hou,Shengwen Qi,Yongtang Yu,Jianguo Zheng. Long-Term Settlement Characterization of High-Filling Foundation in the Mountain Excavation and City Construction Area of the Yan ' an New District, China. Journal of Earth Science. 2023(06): 1908-1915 .

    Other cited types(9)

Catalog

    Article views (199) PDF downloads (98) Cited by(17)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return