• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Jiru, PENG Weike, ZHENG Yanjun. Stress-strain model and deformation parameters of K0-consolidated coral sand[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(3): 478-485. DOI: 10.11779/CJGE20211558
Citation: ZHANG Jiru, PENG Weike, ZHENG Yanjun. Stress-strain model and deformation parameters of K0-consolidated coral sand[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(3): 478-485. DOI: 10.11779/CJGE20211558

Stress-strain model and deformation parameters of K0-consolidated coral sand

More Information
  • Received Date: December 26, 2021
  • Available Online: March 15, 2023
  • The stress path followed by soil consolidation in the hydraulic filling site where the coral sand is used as the filling materials is characterized by K0-consolidation. In order to investigate the stress-strain behaviors of the K0-consolidated coral sand, a series of K0-consolidation tests in a triaxial cell are carried out for the coral sands with different initial relative densities. The K0-values of the coral sands are measured and their particle breakage indexes are evaluated. Based on the generalized Hooke's law, a nonlinear elastic model in the form of a power function is proposed to describe the stress-strain relationship of the K0-consolidated coral sand. The functional expressions for the deformation parameters are presented, and the calculated results of the model are compared with the test curves. The results show that the stress-strain relationship of the K0-consolidated coral sand may be expressed by a power function. With the increase of the axial effective stress, the K0-value decreases, and the particle breakage index increases. Under the same axial effective stress, a small initial relative density corresponds to a large K0-value and a large particle breakage index. As the increase of the axial effective stress in the K0-state, the tangent modulus of the coral sand increases, and the tangent Poisson's ratio decreases. Under the same axial effective stress, the larger the initial relative density, the larger the tangent modulus, and the smaller the tangent Poisson's ratio. The stress-strain relationship of the K0-consolidated coral sand with different initial relative densities within a certain stress range is reasonably predicted by the power function model. The model and deformation parameters reflect the influence of the stress path of K0-consolidation on the stress-strain relationship.
  • [1]
    刘祖德, 陆士强, 杨天林, 等. 应力路径对填土应力应变关系的影响及其应用[J]. 岩土工程学报, 1982, 4(4): 45-55. http://cge.nhri.cn/cn/article/id/8692

    LIU Zude, LU Shiqiang, YANG Tianlin, et al. The influence of stress path on the stress-strain behavior of earthfills and its application[J]. Chinese Journal of Geotechnical Engineering, 1982, 4(4): 45-55. (in Chinese) http://cge.nhri.cn/cn/article/id/8692
    [2]
    孙岳崧, 濮家骝, 李广信. 不同应力路径对砂土应力-应变关系影响[J]. 岩土工程学报, 1987, 9(6): 78-88. http://cge.nhri.cn/cn/article/id/9112

    SUN Yuesong, PU Jialiu, LI Guangxin. Influence of different stress path on stress-strain relationship of sandy soil[J]. Chinese Journal of Geotechnical Engineering, 1987, 9(6): 78-88. (in Chinese) http://cge.nhri.cn/cn/article/id/9112
    [3]
    姚仰平, 刘林, 罗汀. 砂土的UH模型[J]. 岩土工程学报, 2016, 38(12): 2147-2153. doi: 10.11779/CJGE201612002

    YAO Yangping, LIU Lin, LUO Ting. UH model for sands[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(12): 2147-2153. (in Chinese) doi: 10.11779/CJGE201612002
    [4]
    DUNCAN J M, CHANG C Y. Nonlinear analysis of stress and strain in soils[J]. Journal of the Soil Mechanics and Foundations Division, 1970, 96(5): 1629-1653. doi: 10.1061/JSFEAQ.0001458
    [5]
    DUNCAN J M, BYRNE P, WONG K S, et al. Strength, Stress-Strain, and Bulk Modulus Parameters for Finite Element Analyses of Stresses and Movements in Soil Masses[R]. Berkeley, California: College of Engineering, University of California, 1980.
    [6]
    DOMASCHUK L, VALLIAPPAN P. Nonlinear settlement analysis by finite element[J]. Journal of the Geotechnical Engineering Division, 1975, 101(7): 601-614. doi: 10.1061/AJGEB6.0000175
    [7]
    柳志平, 刘泉声, 程勇, 等. 卸荷土体本构模型选用及其参数的确定——以港珠澳大桥拱北隧道明挖段基坑为例[J]. 岩土工程学报, 2012, 34(增刊1): 197-202. http://cge.nhri.cn/cn/article/id/14746

    LIU Zhiping, LIU Quansheng, CHENG Yong, et al. Selection and parametric determination of constitutive model for unloading soil—Case study of foundation pit at open excavation section of Gongbei tunnel of Hongkong- Zhuhai-Macau Bridge[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(S1): 197-202. (in Chinese) http://cge.nhri.cn/cn/article/id/14746
    [8]
    邵晓泉, 迟世春. 堆石料变形参数的粒径尺寸相关性研究[J]. 岩土工程学报, 2020, 42(9): 1715-1722. doi: 10.11779/CJGE202009016

    SHAO Xiaoquan, CHI Shichun. Particle size correlation of deformation parameters for rockfill materials[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(9): 1715-1722. (in Chinese) doi: 10.11779/CJGE202009016
    [9]
    MIHAI L A, GORIELY A. How to characterize a nonlinear elastic material? A review on nonlinear constitutive parameters in isotropic finite elasticity[J]. Proceedings Mathematical, Physical, and Engineering Sciences, 2017, 473(2207): 20170607.
    [10]
    张季如, 罗明星, 彭伟珂, 等. 不同应力路径下钙质砂力学特性的排水三轴试验研究[J]. 岩土工程学报, 2021, 43(4): 593-602. doi: 10.11779/CJGE202104001

    ZHANG Jiru, LUO Mingxing, PENG Weike, et al. Drained triaxial tests on mechanical properties of calcareous sand under various stress paths[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(4): 593-602. (in Chinese) doi: 10.11779/CJGE202104001
    [11]
    胡利文, 刘志军. 真空预压加固土体变形机制分析[J]. 岩土力学, 2021, 42(3): 790-799, 812. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202103022.htm

    HU Liwen, LIU Zhijun. Analysis on deformation mechanism of soft soil reinforcement by vacuum preloading[J]. Rock and Soil Mechanics, 2021, 42(3): 790-799, 812. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202103022.htm
    [12]
    王立忠, 沈恺伦. K0固结结构性软黏土的本构模型[J]. 岩土工程学报, 2007, 29(4): 496-504. http://cge.nhri.cn/cn/article/id/12452

    WANG Lizhong, SHEN Kailun. A constitutive model of K0 consolided structured soft clays[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(4): 496-504. (in Chinese) http://cge.nhri.cn/cn/article/id/12452
    [13]
    HARDIN B O. Crushing of soil particles[J]. Journal of Geotechnical Engineering, 1985, 111(10): 1177-1192.
    [14]
    CHU J, GAN C L. Effect of void ratio on K0 of loose sand[J]. Géotechnique, 2004, 54(4): 285-288.
    [15]
    XIAO Y, LIU H L, CHEN Q S, et al. Particle breakage and deformation of carbonate sands with wide range of densities during compression loading process[J]. Acta Geotechnica, 2017, 12(5): 1177-1184.
    [16]
    WANG C Y, DING X M, XIAO Y, et al. Effects of relative densities on particle breaking behaviour of non-uniform grading coral sand[J]. Powder Technology, 2021, 382: 524-531.
    [17]
    相彪, 张宗亮, 迟世春. 堆石料等应力比路径三模量增量非线性模型[J]. 岩土工程学报, 2008, 30(9): 1322-1326. http://cge.nhri.cn/cn/article/id/12969

    XIANG Biao, ZHANG Zongliang, CHI Shichun. Three-modulus incremental nonlinear model of rockfill under paths of constant stress ratio[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(9): 1322-1326. (in Chinese) http://cge.nhri.cn/cn/article/id/12969
  • Related Articles

    [1]HOU Tianshun, ZHANG Jiancheng, SHU Bo. Model tests on earth pressure at rest of light weight soil behind rigid retaining walls[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(4): 764-773. DOI: 10.11779/CJGE20220928
    [2]HOU Tian-shun, GUO Peng-fei, YANG Kai-xuan, WANG Qi, LUO Ya-sheng. Characteristics and method for calculating earth pressure at rest of light weight soil with foamed particles[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(12): 2234-2244. DOI: 10.11779/CJGE202212010
    [3]ZHANG Kun-yong, LI Guang-shan, MEI Xiao-hong, DU Wei. Stress-deformation characteristics of silty soil based on K0 consolidation and drainage unloading stress path tests[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(7): 1182-1188. DOI: 10.11779/CJGE201707003
    [4]MO Wei-hong, CHEN Xiao-ping, LUO Qing-zi. Deformation of soft soils under constant stress ration consolidation with K0 [J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 798-803.
    [5]JIA Ning. Coefficient of at-rest earth pressure from limited backfill[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(7): 1333-1337.
    [6]Cyclic shearing behavior of K0-consolidated clay and its rheological simulation[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(12): 1946-1955.
    [7]Critical load of ground considering load embedded depth and variation of K0[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(12): 1930-1934.
    [8]YAO Yangping, HOU Wei. A unified hardening model for K0 overconsolidated clays[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(3): 316-322.
    [9]WANG Lizhong, DAN Hanbo. Elastic viscoplastic constitutive model for K0-consolidated soft clays[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(9): 1344-1354.
    [10]WANG Lizhong, YE Shenghua, SHEN Kailun, HU Yayuan. Undrained shear strength of K0 consolidated soft clays[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(8): 970-977.
  • Cited by

    Periodical cited type(2)

    1. 张季如,郑颜军,彭伟珂,王磊,陈敬鑫. 填土应力路径下珊瑚砂幂律应力-应变模型的适用性研究. 岩土力学. 2023(05): 1309-1318 .
    2. 熊雪梅,郑宇轩,黄俊宇,周风华. 粒径和围压对珊瑚砂侧限压缩性能的影响. 硅酸盐通报. 2023(06): 2037-2046 .

    Other cited types(0)

Catalog

    Article views (338) PDF downloads (95) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return