• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
JI Jian, ZHANG Zhe-ming, XIA Jia-cheng, MIN Fan-lu, WU Zhi-jun. Inverse reliability-based design of limit support pressure for tunnel face stability[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(10): 1825-1833. DOI: 10.11779/CJGE202110008
Citation: JI Jian, ZHANG Zhe-ming, XIA Jia-cheng, MIN Fan-lu, WU Zhi-jun. Inverse reliability-based design of limit support pressure for tunnel face stability[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(10): 1825-1833. DOI: 10.11779/CJGE202110008

Inverse reliability-based design of limit support pressure for tunnel face stability

More Information
  • Received Date: February 05, 2021
  • Available Online: December 02, 2022
  • The possibility of reliability-based design (RBD) for shallow circular tunnels is explored using the simplified inverse first-order reliability method (FORM). The inverse reliability analysis can directly offer some design information that meets the targeted reliability index, and the calculation procedure can be easily implemented in the original space of random variables. In the tunnel face stability analysis, the deterministic results of the support pressures are obtained through the three-dimensional finite element limit analysis (FELA), and the limit state functions are established for the collapse and blow-out failure modes of the excavated face, respectively. In the probabilistic study, the inverse reliability method shows adequate accuracy by comparing with Monte Carlo simulations. On this basis, a series of probability analysis and RBD of the limit support pressures for maintaining the tunnel face stability in cohesive soil and sandy soil strata are carried out. Some insightful RBD results are obtained with respect to different scenarios of shear strength uncertainties. Finally, the effects of spatial variability of shear strength parameters of soils on the required support pressures of tunnel face are discussed.
  • [1]
    VERMEER P A, RUSE N, MARCHER T. Tunnel heading stability in drained ground[J]. Felsbau, 2002, 20(6): 8-18.
    [2]
    李伟平, 李兴, 薛亚东, 等. 砂卵石地层浅埋盾构隧道开挖面稳定模型试验[J]. 岩土工程学报. 2018, 40(增刊2): 199-203. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2018S2042.htm

    LI Wei-Ping, LI Xing, XUE Ya-dong, et al. Model tests on face stability of shallow shield tunnels in sandy cobble strata[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S2): 199-203. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2018S2042.htm
    [3]
    吕玺琳, 王浩然, 黄茂松. 盾构隧道开挖面稳定极限理论研究[J]. 岩土工程学报, 2011, 33(1): 57-62. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201101012.htm

    LÜ Xi-lin, WANG Hao-ran, HUANG Mao-song. Limit theoretical study on face stability of shield tunnels[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(1): 57-62. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201101012.htm
    [4]
    WILSON D W, ABBO A J, SLOAN S W, et al. Undrained stability of a circular tunnel where the shear strength increases linearly with depth[J]. Canadian Geotechnical Journal, 2011, 48(9): 1328-1342. doi: 10.1139/t11-041
    [5]
    ZHANG F, GAO Y, WU Y, et al. Face stability analysis of large-diameter slurry shield-driven tunnels with linearly increasing undrained strength[J]. Tunnelling and Underground Space Technology, 2018, 78: 178-187. doi: 10.1016/j.tust.2018.04.018
    [6]
    XIANG Y, LIU H, ZHANG W, et al. Application of transparent soil model test and DEM simulation in study of tunnel failure mechanism[J]. Tunnelling and Underground Space Technology, 2018, 74: 178-184. doi: 10.1016/j.tust.2018.01.020
    [7]
    LOW B K, EINSTEIN H H. Reliability analysis of roof wedges and rockbolt forces in tunnels[J]. Tunnelling and Underground Space Technology, 2013, 38: 1-10. doi: 10.1016/j.tust.2013.04.006
    [8]
    LÜ Q, XIAO Z, JI J, et al. Reliability based design optimization for a rock tunnel support system with multiple failure modes using response surface method[J]. Tunnelling and Underground Space Technology, 2017, 70: 1-10. doi: 10.1016/j.tust.2017.06.017
    [9]
    MOLLON G, DIAS D, SOUBRA A H. Probabilistic analysis of circular tunnels in homogeneous soil using response surface methodology[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(9): 1314-1325. doi: 10.1061/(ASCE)GT.1943-5606.0000060
    [10]
    PAN Q J, DIAS D. Probabilistic evaluation of tunnel face stability in spatially random soils using sparse polynomial chaos expansion with global sensitivity analysis[J]. Acta Geotechnica, 2017, 12(6): 1415-1429. doi: 10.1007/s11440-017-0541-5
    [11]
    蒋水华, 刘贤, 曾绍慧, 等. 盾构隧道开挖面稳定非侵入式可靠度分析[J]. 地下空间与工程学报, 2019, 15(增刊2): 583-589. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE2019S2012.htm

    JIANG Shui-hua, LIU Xian, ZENG Shao-hui, et al. Non-intrusive reliability analysis on excavation face stability of shield-driven tunnels[J]. Chinese Journal of Underground Space and Engineering, 2019, 15(S2): 583-589. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE2019S2012.htm
    [12]
    LOW B K, TANG W H. Reliability analysis using object- oriented constrained optimization[J]. Structural Safety, 2004, 26(1): 69-89. doi: 10.1016/S0167-4730(03)00023-7
    [13]
    RACKWITZ R, FLESSLER B. Structural reliability under combined random load sequences[J]. Computers & Structures, 1978, 9(5): 489-494.
    [14]
    JI J, KODIKARA J K. Efficient reliability method for implicit limit state surface with correlated non-Gaussian variables[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2015, 39(17): 1898-1911. doi: 10.1002/nag.2380
    [15]
    JI J, ZHANG C, GAO Y, et al. Reliability-based design for geotechnical engineering: an inverse FORM approach for practice[J]. Computers and Geotechnics, 2019, 111: 22-29. doi: 10.1016/j.compgeo.2019.02.027
    [16]
    SHIAU J, AL-ASADI F. Determination of critical tunnel heading pressures using stability factors[J]. Computers and Geotechnics, 2020, 119: 103345. doi: 10.1016/j.compgeo.2019.103345
    [17]
    赵明华, 张锐. 有限元上限分析网格自适应方法及其工程应用[J]. 岩土工程学报, 2016, 38(3): 537-545. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201603021.htm

    ZHAO Ming-hua, ZHANG Rui. Adaptive mesh refinement of upper bound finite element method and its applications in geotechnical engineering[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(3): 537-545. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201603021.htm
    [18]
    Optum CE[CP]. Optum Computational Engineering, 2019. https://www.optumce.com.
    [19]
    ZHANG W, MENG F, CHEN F, et al. Effects of spatial variability of weak layer and seismic randomness on rock slope stability and reliability analysis[J]. Soil Dynamics and Earthquake Engineering, 2021, 146: 106735. doi: 10.1016/j.soildyn.2021.106735
    [20]
    LIU H, LOW B K. Reliability-based design of tunnelling problems and insights for Eurocode 7[J]. Computers and Geotechnics, 2018, 97: 42-51. doi: 10.1016/j.compgeo.2017.12.005
    [21]
    MOLLON G, DIAS D, SOUBRA A. Range of the safe retaining pressures of a pressurized tunnel face by a probabilistic approach[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(11): 1954-1967. doi: 10.1061/(ASCE)GT.1943-5606.0000911
    [22]
    程红战, 陈健, 胡之锋, 等. 考虑砂土抗剪强度空间变异性的盾构开挖面稳定性分析[J]. 岩土力学, 2018, 39(8): 3047-3054. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201808040.htm

    CHENG Hong-zhan, CHEN Jian, HU Zhi-feng, et al. Face stability analysis for a shield tunnel considering spatial variability of shear strength in sand[J]. Rock and Soil Mechanics, 2018, 39(8): 3047-3054. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201808040.htm
    [23]
    ZHANG W, JI J, GAO Y, et al. Spatial variability effect of internal friction angle on the post-failure behavior of landslides using a random and non-Newtonian fluid based SPH method[J]. Geoscience Frontiers, 2020, 11(4): 1107-1121. doi: 10.1016/j.gsf.2020.02.003
    [24]
    仉文岗, 王琦, 刘汉龙, 等. 岩体空间变异性对隧道拱顶失效概率的影响[J]. 岩土力学, 2021, 42(5): 1462-1472. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202105028.htm

    ZHANG Wen-gang, WANG Qi, LIU Han-long, et al. Influence of rock mass spatial variability on probability of tunnel roof wedge failure[J]. Rock and Soil Mechanics, 2021, 42(5): 1462-1472. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202105028.htm
    [25]
    HUANG J, LYAMIN A V, GRIFFITHS D V, et al. Quantitative risk assessment of landslide by limit analysis and random fields[J]. Computers and Geotechnics, 2013, 53: 60-67.
  • Related Articles

    [1]DENG Zhiping, ZHONG Min, PAN Min, ZHENG Kehong, NIU Jingtai, JIANG Shuihua. Slope reliability analysis considering spatial variability of parameters based on efficient surrogate model[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(2): 273-281. DOI: 10.11779/CJGE20221338
    [2]ZHANG Jin-zhang, HUANG Hong-wei, ZHANG Dong-ming, PHOON Kok-kwang, TANG Chong. Simplified methods for deformation analysis of tunnel structures considering spatial variability of soil properties[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(1): 134-143. DOI: 10.11779/CJGE202201013
    [3]DENG Zhi-ping, NIU Jing-tai, PAN Min, PENG You-wen, CUI Meng. Full probabilistic design method for slopes considering geological uncertainty and spatial variability of soil parameters[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 1083-1090. DOI: 10.11779/CJGE201906012
    [4]CHEN Zhao-hui, LEI Jian, HUANG Jing-hua, CHENG Xiao-hui, ZHANG Zhi-chao. Finite element limit analysis of slope stability considering spatial variability of soil strengths[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(6): 985-993. DOI: 10.11779/CJGE201806003
    [5]JIANG Shui-hua, WEI Bo-wen, HUANG Jin-song. Probabilistic back analysis of slope failure considering spatial variability of soil properties[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(3): 475-485. DOI: 10.11779/CJGE201703011
    [6]YANG Ge, ZHU Sheng. Seismic response of rockfill dams considering spatial variability of rockfill materials via random finite element method[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(10): 1822-1832. DOI: 10.11779/CJGE201610011
    [7]LIN Jun, CAI Guo-jun, ZOU Hai-feng, LIU Song-yu. Assessment of spatial variability of Jiangsu marine clay based on random field theory[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(7): 1278-1287. DOI: 10.11779/CJGE201507014
    [8]TANG Yu-geng, KUNG Gordon Tung-chin. Basal-heave analysis of a braced excavation considering spatial variability of soft ground[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 542-545.
    [9]LI Dian-qing, QI Xiao-hui, ZHOU Chuang-bing, ZHANG Li-min. Reliability analysis of infinite soil slopes considering spatial variability of soil parameters[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(10): 1799-1806.
    [10]LI Dian-qing, JIANG Shui-hua, ZHOU Chuang-bing, PHOON Kok Kwang. Reliability analysis of slopes considering spatial variability of soil parameters using non-intrusive stochastic finite element method[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1413-1422.
  • Cited by

    Periodical cited type(9)

    1. 周文朋,王开军,冯宏朝,高锋,高梁,徐荣超. 超高特大矩形顶管始发端掌子面稳定性计算. 水利与建筑工程学报. 2025(01): 144-153 .
    2. 郝鹏 ,杨浩 ,冯少军 ,王博 . 高置信水平结构逆可靠度分析与优化方法研究进展. 力学学报. 2024(02): 310-326 .
    3. 钟华,韩玉,陶志刚,刘能源. 软岩隧道NPR锚索主动控制关键技术. 地下空间与工程学报. 2024(02): 587-596+605 .
    4. 黄阜,陈晶晶,王勇涛,杨云强,谭瑞. 基于极限分析理论的复合地层中双模盾构开挖面稳定性研究. 土木与环境工程学报(中英文). 2024(06): 89-99 .
    5. 熊先勇,曾亚林,付慧建,曾威. 基于支持向量机和改进粒子群算法的钢管混凝土拱桥可靠度分析. 公路工程. 2023(02): 55-61 .
    6. 李天胜,何川,方砚兵,周子寒,包烨明,陈子全,白国峰. 基于围岩变形失效的隧道结构可靠度设计方法. 西南交通大学学报. 2023(03): 613-621 .
    7. 孙望成. 考虑Hoek–Brown准则的盾构隧道掌子面稳定性分析. 湖南文理学院学报(自然科学版). 2023(03): 32-36+43 .
    8. 吴兴征,刘赫. 土工构筑物的逆几何可靠性分析算法. 土木与环境工程学报(中英文). 2023(05): 106-115 .
    9. 徐中秋,杨扬,鲁芬婷. 顶管施工对始发端土体影响的分析与研究. 新乡学院学报. 2022(09): 69-72 .

    Other cited types(13)

Catalog

    Article views (262) PDF downloads (164) Cited by(22)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return