• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
MA Gang, WANG Yuan, CHENG Jia-lin, YE Xiao-feng, ZOU Yu-xiong, ZHOU Wei, LIU Qi-wen. Influences of wetting on crushing and compression characteristics of rockfill particles[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1640-1648. DOI: 10.11779/CJGE202109008
Citation: MA Gang, WANG Yuan, CHENG Jia-lin, YE Xiao-feng, ZOU Yu-xiong, ZHOU Wei, LIU Qi-wen. Influences of wetting on crushing and compression characteristics of rockfill particles[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1640-1648. DOI: 10.11779/CJGE202109008

Influences of wetting on crushing and compression characteristics of rockfill particles

More Information
  • Received Date: December 16, 2020
  • Available Online: December 02, 2022
  • Wetting deformation of rockfills affects the safety and stability of rockfill dams, which has always been the focus of engineering and academic circles. However, the mechanism of wetting deformation is still not fully understood at present. The laboratory tests, scanning electron microscope and combined finite-discrete element method are used to study the effects of wetting on the crushing and compression characteristics of the rockfills. The single particle crushing tests and SEM of dry and saturated particles show that the wetting leads to the change of rock mineral composition and microstructure of particles. The pores, microcracks and other defects increase owing to the wetting, which reduce the crushing strength of particles and surface friction coefficient. The mesoscopic parameters of the dry and saturated particles are determined, and the numerical tests on the single particle crushing and the uniaxial compression of the particle assembly in the dry and saturated states are conducted. The wetting has effects of lubricating, softening and degrading on the rockfills, which make the friction coefficient, deformation modulus and crushing strength of the rockfill particles decrease to different degrees. The wetting reduces the crushing strength of the particles by 22.6%, the friction coefficient between the particles by 11.7%, and the compression modulus of the particle assembly by 13.1%. The main reason of wetting deformation of the rockfills is the particle breakage caused by the reduction of crushing strength.
  • [1]
    NAYLOR D J, MARANHA J R, NEVES E M D, et al. A back-analysis of Beliche Dam[J]. Géotechnique, 1997, 47(2): 221-233. doi: 10.1680/geot.1997.47.2.221
    [2]
    胡超, 周伟, 常晓林, 等. 基于内聚力模型的高心墙堆石坝坝顶裂缝模拟及其成因分析[J]. 中南大学学报(自然科学版), 2014, 45(7): 2303-2310. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201407023.htm

    HU Chao, ZHOU Wei, CHANG Xiao-lin, et al. Modeling of dam crest cracks of high core rockfill dam based on cohesive zone model and crack formation analysis[J]. Journal of Central South University (Science and Technology), 2014, 45(7): 2303-2310. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201407023.htm
    [3]
    张丙印, 师瑞锋. 流变变形对高面板堆石坝面板脱空的影响分析[J]. 岩土力学, 2004, 25(8): 1179-1184. doi: 10.3969/j.issn.1000-7598.2004.08.001

    ZHANG Bing-yin, SHI Rui-feng. Influence of creeping on separation between concrete slab and cushion layer in high concrete face rock-fill dam[J]. Rock and Soil Mechanics, 2004, 25(8): 1179-1184. (in Chinese) doi: 10.3969/j.issn.1000-7598.2004.08.001
    [4]
    BAUD P, ZHU W, WONG T F. Failure Mode and Weakening Effect of Water on Sandstone[M]. New York: John Wiley & Sons, Ltd, 2000.
    [5]
    HAM T G, NAKATA Y, ORENSE R, et al. Influence of water on the compression behavior of decomposed granite soil[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(5): 697-705. doi: 10.1061/(ASCE)GT.1943-5606.0000274
    [6]
    魏松, 朱俊高. 粗粒料三轴湿化颗粒破碎试验研究[J]. 岩石力学与工程学报, 2006, 25(6): 1252-1258. doi: 10.3321/j.issn:1000-6915.2006.06.025

    WEI Song, ZHU Jun-gao. Study on wetting breakage of coarse-grained materials in triaxial test[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(6): 1252-1258. (in Chinese) doi: 10.3321/j.issn:1000-6915.2006.06.025
    [7]
    丁艳辉, 袁会娜, 张丙印. 堆石料非饱和湿化变形特性试验研究[J]. 工程力学, 2013, 30(9): 139-143. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201309022.htm

    DING Yan-hui, YUAN Hui-na, ZHANG Bing-yin. Unsaturated wetting deformation characteristics of rockfill materials[J]. Engineering Mechanics, 2013, 30(9): 139-143. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201309022.htm
    [8]
    丁艳辉, 张丙印, 钱晓翔, 等. 堆石料湿化变形特性试验研究[J]. 岩土力学, 2019, 40(8): 2975-2981. doi: 10.16285/j.rsm.2018.0891

    DING Yan-hui, ZHANG Bing-yin, QIAN Xiao-xiang, et al. Experimental study of the characteristics of wetting deformation of rockfill materials[J]. Rock and Soil Mechanics, 2019, 40(8): 2975-2981. (in Chinese) doi: 10.16285/j.rsm.2018.0891
    [9]
    贾宇峰, 姚世恩, 迟世春. 等应力比路径下粗粒土湿化试验研究[J]. 岩土工程学报, 2019, 41(4): 648-654. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201904009.htm

    JIA Yu-feng, YAO Shi-en, CHI Shi-chun. Wetting of coarse-grained soil under equal stress ratio path[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 648-654. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201904009.htm
    [10]
    JIA Y F, XU B, DESAI C S, et al. Rockfill particle breakage generated by wetting deformation under the complex stress path[J]. International Journal of Geomechanics, 2020, 20(10): 1-11.
    [11]
    ULUSAY R, KARAKUL H. Assessment of basic friction angles of various rock types from Turkey under dry, wet and submerged conditions and some considerations on tilt testing[J]. Bulletin of Engineering Geology and the Environment, 2016, 75(4): 1683-1699. doi: 10.1007/s10064-015-0828-4
    [12]
    沈广军, 殷宗泽. 粗粒料浸水变形分析方法的改进[J]. 岩石力学与工程学报, 2009, 28(12): 2437-2444. doi: 10.3321/j.issn:1000-6915.2009.12.008

    SHEN Guang-jun, YIN Zong-ze. Improvement of wetting deformation analysis method of coarse-grained materials[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(12): 2437-2444. (in Chinese) doi: 10.3321/j.issn:1000-6915.2009.12.008
    [13]
    程展林, 左永振, 丁红顺, 等. 堆石料湿化特性试验研究[J]. 岩土工程学报, 2010, 32(2): 243-247. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201002016.htm

    CENG Zhan-lin, ZUO Yong-zhen, Ding Hong-shun, et al. Wetting characteristics of coarse-grained materials[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(2): 243-247. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201002016.htm
    [14]
    曹光栩, 宋二祥, 徐明. 碎石料干湿循环变形试验及计算方法[J]. 哈尔滨工业大学学报, 2011, 43(10): 98-104. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201110022.htm

    CAO Guang-xu, SONG Er-xiang, XU Ming. Study on experiment and calculation method of dry-wet cycle characteristics of rockfills[J]. Journal of Harbin Institute of Technology, 2011, 43(10): 98-104. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201110022.htm
    [15]
    迟世春, 周雄雄. 堆石料的湿化变形模型[J]. 岩土工程学报, 2017, 39(1): 48-55. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201701003.htm

    CHI Shi-chun, ZHOU Xiong-xiong. Slaking deformation model for rockfill materials[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(1): 48-55. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201701003.htm
    [16]
    ZHOU X X, CHI S C, JIA Y F, et al. A new wetting deformation simulation method based on changes in mechanical properties[J]. Computers and Geotechnics, 2020, 117: 1-21.
    [17]
    黄绪武, 周伟, 马刚, 等. 考虑摩擦系数和颗粒强度劣化效应的堆石体湿化细观数值模拟[J]. 中国农村水利水电, 2017(9): 125-131. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNSD201709029.htm

    HUANG Xu-wu, ZHOU Wei, MA Gang, et al. Numerical simulation of rockfill wetting considering deterioration of friction coefficient and bond strength[J]. China Rural Water and Hydropower, 2017(9): 125-131. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNSD201709029.htm
    [18]
    杨贵, 刘汉龙, 朱俊高. 粗粒料湿化变形数值模拟研究[J]. 防灾减灾工程学报, 2012, 32(5): 535-538. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201205004.htm

    YANG Gui, LIU Han-long, ZHU Jun-gao. Numerical simulation research on coarse material wetting deformation[J]. Journal of Disaster Prevention and Mitigation Engineering, 2012, 32(5): 535-538. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201205004.htm
    [19]
    王蕴嘉, 周梦佳, 宋二祥. 考虑颗粒破碎的堆石料湿化变形特性离散元模拟研究[J]. 工程力学, 2018, 35(增刊1): 217-222. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX2018S1038.htm

    WANG Yun-jia, ZHOU Meng-jia, SONG Er-xiang. DEM simulation of wetting deformation characteristics of rockfill considering particle breakage[J]. Engineering Mechanics, 2018, 35(S1): 217-222. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX2018S1038.htm
    [20]
    SHAO X Q, CHI S C, TAO Y, et al. DEM simulation of the size effect on the wetting deformation of rockfill materials based on single-particle crushing tests[J]. Computers and Geotechnics, 2020, 123(3): 1-12.
    [21]
    FENG R, HE Y L, CAO X X, et al. Different deformation patterns in high core wall rockfill dams: a case study of the Maoergai and Qiaoqi Dams[J]. Advances in Civil Engineering, 2019(2): 1-17.
    [22]
    MA G, ZHOU W, CHANG X L, et al. A hybrid approach for modeling of breakable granular materials using combined finite-discrete element method[J]. Granular Matter, 2016, 18(1): 1-17.
    [23]
    邓璇璇, 马刚, 周伟, 等. 局部约束模式对单颗粒破碎强度的影响[J]. 浙江大学学报(工学版), 2018, 52(7): 1329-1337. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201807013.htm

    DENG Xuan-xuan, MA Gang, ZHOU Wei, et al. Effect of local constraints patterns on fragmentation of single grain[J]. Journal of Zhejiang University (Engineering Science), 2018, 52(7): 1329-1337. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201807013.htm
    [24]
    陈兴, 马刚, 周伟, 等. 无序性对脆性材料冲击破碎的影响[J]. 物理学报, 2018, 67(14): 219-228. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201814024.htm

    CHEN Xing, MA Gang, ZHOU Wei, et al. The influence of disorder on the impact crushing of brittle materials[J]. Acta Physica Sinica, 2018, 67(14): 219-228. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201814024.htm
    [25]
    MCDOWELL G R. Statistics of soil particle strength[J]. Géotechnique, 2001, 51(10): 897-900.
    [26]
    WEI D, ZHAO B, DIAS-DA-COSTA D, et al. An FDEM study of particle breakage under rotational point loading[J]. Engineering Fracture Mechanics, 2019, 212: 221-237.
    [27]
    OVALLE C, FROSSARD E, DANO C, et al. The effect of size on the strength of coarse rock aggregates and large rockfill samples through experimental data[J]. Acta Mechanica, 2014, 225(8): 2199-2216.
    [28]
    周海娟, 马刚, 袁葳, 等. 堆石颗粒压缩破碎强度的尺寸效应[J]. 岩土力学, 2017, 38(8): 2425-2433. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201708035.htm

    ZHOU Hai-juan, MA Gang, YUAN Wei, et al. Size effect on the crushing strengths of rock particles[J]. Rock and Soil Mechanics, 2017, 38(8): 2425-2433. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201708035.htm
    [29]
    MCDOWELL G R, AMON A. The application of Weibull statistics to the fracture of soil particles[J]. Soils and Foundations, 2000, 40(5): 133-141.
    [30]
    孙壮壮, 马刚, 周伟, 等. 颗粒形状对堆石颗粒破碎强度尺寸效应的影响[J]. 岩土力学, 2021, 42(2): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202102015.htm

    SUN Zhuang-zhuang, MA Gang, ZHOU Wei, et al. Effect of particle shape on size effect of crushing strength of rockfill particles[J]. Rock and Soil Mechanics, 2021, 42(2): 1-10. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202102015.htm
    [31]
    MA G, ZHOU W, REGUEIRO R A, et al. Modeling the fragmentation of rock grains using computed tomography and combined FDEM[J]. Powder Technology, 2017, 308: 388-397.
    [32]
    MCDOWELL G R, DE BONO J P. On the micro mechanics of one-dimensional normal compression[J]. Géotechnique, 2013, 63(11): 895-908.
    [33]
    MA G, CHEN Y, YAO F H, et al. Evolution of particle size and shape towards a steady state: insights from FDEM simulations of crushable granular materials[J]. Computers and Geotechnics, 2019, 112: 147-158.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return