• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
KONG Xian-jing, LIU Jing-mao, ZOU De-gao, SONG Yong-chen, CHEN Kai, QU Yong-qian, GONG Jin. State-of-the-art: computational model for soil-interface-structure system[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 397-405. DOI: 10.11779/CJGE202103001
Citation: KONG Xian-jing, LIU Jing-mao, ZOU De-gao, SONG Yong-chen, CHEN Kai, QU Yong-qian, GONG Jin. State-of-the-art: computational model for soil-interface-structure system[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 397-405. DOI: 10.11779/CJGE202103001

State-of-the-art: computational model for soil-interface-structure system

More Information
  • Received Date: March 04, 2020
  • Available Online: December 04, 2022
  • The interaction between soil and structure is a common problem in geotechnical engineering, which plays a key role in assessing the damage behavior of structure. The computational model for soil-interface-structure system is the foundation of the detailed study of the interaction between soil and structure, but it has to solve a series of problems, including soil-structure contact constraint and contact judgment, soil-structure mechanical behavior and constitutive model, and grid model for soil-interface-structure system, etc. The progress of the computational model for soil-interface-structure system is summarized, and a suggestion of its main developing trend is put forward.
  • [1]
    SHARMA K G, DESAI C S. Analysis and implementation of thin-layer element for interfaces and joints[J]. Journal of Engineering Mechanics, 1992, 118(12): 2442-2462. doi: 10.1061/(ASCE)0733-9399(1992)118:12(2442)
    [2]
    KONG X, LIU J, ZOU D. Numerical simulation of the separation between concrete face slabs and cushion layer of Zipingpu dam during the Wenchuan earthquake[J]. Science China Technological Sciences, 2016, 59(4): 531-539. doi: 10.1007/s11431-015-5953-6
    [3]
    孔祥安, 江晓禹, 金雪松. 固体接触力学[M]. 北京: 中国铁道出版社, 1999.

    KONG Xiang-an, JIANG Xiao-yu, JIN Xue-song. Solid Contact Mechanics[M]. Beijing: China Railway Press, 1999. (in Chinese)
    [4]
    王勖成. 有限单元法[M]. 北京: 清华大学出版社, 2003.

    WANG Xu-cheng. Finite Element Method[M]. Beijing: Tsinghua University Press, 2003. (in Chinese)
    [5]
    JIANG L, ROGERS R J. Combined Lagrangian multiplier and penalty function finite element technique for elastic impact analysis[J]. Computers & Structures, 1988, 30(6): 1219-1229.
    [6]
    张丙印, 师瑞锋, 王刚. 高面板堆石坝面板脱空问题的接触力学分析[J]. 岩土工程学报, 2003, 25(3): 361-364. doi: 10.3321/j.issn:1000-4548.2003.03.024

    ZHANG Bing-yin, SHI Rui-feng, WANG Gang. Contact mechanics analysis of slab void problem of high concrete face rockfill dam[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(3): 361-364. (in Chinese) doi: 10.3321/j.issn:1000-4548.2003.03.024
    [7]
    GOODMAN R E, TAYLOR R L, BREKKE T L. A model for the mechanics of jointed rock[J]. Journal of Soil Mechanics & Foundations Div, 1968, 94: 637-660.
    [8]
    雷晓燕, 王五全. 消除接触摩擦单元应力振荡的方法[J]. 华东交通大学学报, 1993, 10(4): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-HDJT199304000.htm

    LEI Xiao-yan, WANG Wu-quan. Method for eliminating stress oscillation of contact friction element[J]. Journal of East China Jiaotong University, 1993, 10(4): 1-8. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HDJT199304000.htm
    [9]
    DAY R A, POTTS D M. Zero thickness interface elements—numerical stability and application[J]. International Journal for Numerical & Analytical Methods in Geomechanics, 1994, 18(10): 689-708.
    [10]
    GRIFFITHS D V. Numerical modelling of interfaces using conventional finite elements[C]//Proc 5th International Conference on Numerical Methods in Geomechanics, 1987, Nagoya: 837-844.
    [11]
    ZIENKIEWICZ O C. Analysis of nonlinear problem in rock mechanics with paticular reference to jointed rock systems[C]//Proc 2nd Int Congress on Rock Mechanics, 1970, Belgrade.
    [12]
    WILSON E L. Finite elements for foundations, joints and fluids[C]//Finite Elements in Geomechanics, Wiley and Sons, 1977, London.
    [13]
    PANDE G N, SHARMA K G. On joint/interface elements and associated problems of numerical ill‐conditioning[J]. International Journal for Numerical & Analytical Methods in Geomechanics, 1979, 3(3): 293-300.
    [14]
    DESAI C S, ZAMAN M M, LIGHTNER J G, et al. Thin‐layer element for interfaces and joints[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1984, 8(1): 19-43. doi: 10.1002/nag.1610080103
    [15]
    YOSHIMI Y, KISHIDA T. A ring torsion apparatus for evaluating friction between soil and metal surfaces[J]. ASTM Geotechnical Testing Journal, 1981, 4(4): 145-152. doi: 10.1520/GTJ10783J
    [16]
    DESAI C S, DRUMM E C, ZAMAN M M. Cyclic testing and modeling of interfaces[J]. Journal of Geotechnical Engineering, 1985, 111(6): 793-815. doi: 10.1061/(ASCE)0733-9410(1985)111:6(793)
    [17]
    FAKHARIAN K, EVGIN E. Cyclic simple-shear behavior of sand-steel interfaces under constant normal stiffness condition[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1997, 123(12): 1096-1105. doi: 10.1061/(ASCE)1090-0241(1997)123:12(1096)
    [18]
    LIU H, MARTINEZ J. Creep behaviour of sand-geomembrane interfaces[J]. Geosynthetics International, 2014, 21(1): 83-88. doi: 10.1680/gein.13.00036
    [19]
    SHENG D, WRIGGERS P, SLOAN S W. Application of frictional contact in geotechnical engineering[J]. International Journal of Geomechanics, 2007, 7(3): 176-185. doi: 10.1061/(ASCE)1532-3641(2007)7:3(176)
    [20]
    TABUCANON J T, AIREY D W, POULOS H G. Pile skin friction in sands from constant normal stiffness tests[J]. Geotechnical Testing Journal, 1995, 18(3): 350-364. doi: 10.1520/GTJ11004J
    [21]
    PORCINO D, FIORAVANTE V, GHIONNA V N, et al. Interface behavior of sands from constant normal stiffness direct shear tests[J]. Geotechnical Testing Journal, 2003, 26(3): 289-301.
    [22]
    ZHANG G A, ZHANG J. Monotonic and cyclic tests of interface between structure and gravelly soil[J]. Soils and Foundations, 2006, 46(4): 505-518. doi: 10.3208/sandf.46.505
    [23]
    DESAI C S, PRADHAN S K, COHEN D. Cyclic testing and constitutive modeling of saturated sand-concrete interfaces using the disturbed state concept[J]. International Journal of Geomechanics, 2005, 5(4): 286-294. doi: 10.1061/(ASCE)1532-3641(2005)5:4(286)
    [24]
    ZHANG G, ZHANG J M. Constitutive rules of cyclic behavior of interface between structure and gravelly soil[J]. Mechanics of Materials, 2009, 41(1): 48-59. doi: 10.1016/j.mechmat.2008.08.003
    [25]
    ZHANG G, ZHANG J. Unified modeling of monotonic and cyclic behavior of interface between structure and gravelly soil[J]. Soils and Foundations, 2008, 48(2): 231-245. doi: 10.3208/sandf.48.231
    [26]
    CLOUGH G W, DUNCAN J M. Finite element analyses of retaining wall behavior[J]. Journal of Soil Mechanics and Foundation Division, 1971, SM12(12): 1657-1673.
    [27]
    张冬霁, 卢廷浩. 一种土与结构接触面模型的建立及其应用[J]. 岩土工程学报, 1998, 20(6): 65-69. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC806.012.htm

    ZHANG Dong-ji, LU Ting-hao. Establishment and application of a soil structure interface model[J]. Chinese Journal of Geotechnical Engineering, 1998, 20(6): 65-69. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC806.012.htm
    [28]
    殷宗泽, 朱泓, 许国华. 土与结构材料接触面的变形及其数学模拟[J]. 岩土工程学报, 1994, 16(3): 14-22. doi: 10.3321/j.issn:1000-4548.1994.03.002

    YIN Zong-ze, ZHU Hong, XU Guo-hua. Deformation and mathematical simulation of interface between soil and structural materials[J]. Chinese Journal of Geotechnical Engineering, 1994, 16(3): 14-22. (in Chinese) doi: 10.3321/j.issn:1000-4548.1994.03.002
    [29]
    FAKHARIAN K, EVGIN E. Elasto‐plastic modelling of stress‐path‐dependent behaviour of interfaces[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2000, 24(2): 183-199. doi: 10.1002/(SICI)1096-9853(200002)24:2<183::AID-NAG63>3.0.CO;2-3
    [30]
    GHIONNA V N, MORTARA G. An elastoplastic model for sand-structure interface behaviour[J]. Géotechnique, 2002, 52(1): 41-50. doi: 10.1680/geot.2002.52.1.41
    [31]
    周爱兆, 卢廷浩. 基于广义位势理论的接触面弹塑性本构模型[J]. 岩土工程学报, 2008, 30(10): 1532-1536. doi: 10.3321/j.issn:1000-4548.2008.10.019

    ZHOU Ai-zhao, LU Ting-hao. Elastoplastic constitutive model of contact surface based on generalized potential theory[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(10): 1532-1536. (in Chinese) doi: 10.3321/j.issn:1000-4548.2008.10.019
    [32]
    HU L, PU J L. Application of damage model for soil-structure interface[J]. Computers and Geotechnics, 2003, 30(2): 165-183. doi: 10.1016/S0266-352X(02)00059-9
    [33]
    DESAI C S, MA Y. Modelling of joints and interfaces using the disturbed‐state concept[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1992, 16(9): 623-653. doi: 10.1002/nag.1610160903
    [34]
    LIU H, SONG E, LING H I. Constitutive modeling of soil-structure interface through the concept of critical state soil mechanics[J]. Mechanics Research Communications, 2006, 33(4): 515-531. doi: 10.1016/j.mechrescom.2006.01.002
    [35]
    LASHKARI A. A critical state model for saturated and unsaturated interfaces[J]. Scientia Iranica, 2012, 19(5): 1147-1156. doi: 10.1016/j.scient.2012.06.025
    [36]
    吴军帅, 姜朴. 土与混凝土接触面的动力剪切特性[J]. 岩土工程学报, 1992, 14(2): 61-66. doi: 10.3321/j.issn:1000-4548.1992.02.009

    WU Jun-shuai, JIANG Pu. Dynamic shear behavior of soil concrete interface[J]. Chinese Journal of Geotechnical Engineering, 1992, 14(2): 61-66. (in Chinese) doi: 10.3321/j.issn:1000-4548.1992.02.009
    [37]
    ZOU D, XU B, KONG X, et al. Numerical simulation of the seismic response of the Zipingpu concrete face rockfill dam during the Wenchuan earthquake based on a generalized plasticity model[J]. Computers and Geotechnics, 2013, 49: 111-122. doi: 10.1016/j.compgeo.2012.10.010
    [38]
    SHAHROUR I, REZAIE F. An elastoplastic constitutive relation for the soil-structure interface under cyclic loading[J]. Computers and Geotechnics, 1997, 21(1): 21-39. doi: 10.1016/S0266-352X(97)00001-3
    [39]
    MORTARA G, BOULON M, GHIONNA V N. A 2‐D constitutive model for cyclic interface behaviour[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2002, 26(11): 1071-1096. doi: 10.1002/nag.236
    [40]
    LIU H, LING H I. Constitutive description of interface behavior including cyclic loading and particle breakage within the framework of critical state soil mechanics[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2008, 32(12): 1495-1514. doi: 10.1002/nag.682
    [41]
    SABERI M, ANNAN C, KONRAD J. Implementation of a soil-structure interface constitutive model for application in geo-structures[J]. Soil Dynamics and Earthquake Engineering, 2019, 116: 714-731. doi: 10.1016/j.soildyn.2018.11.001
    [42]
    吴佰建, 李兆霞, 汤可可. 大型土木结构多尺度模拟与损伤分析——从材料多尺度力学到结构多尺度力学[J]. 力学进展, 2007, 37(3): 321-336. doi: 10.3321/j.issn:1000-0992.2007.03.001

    WU Bai-jian, LI Zhao-xia, TANG Ke-ke. Multi scale simulation and damage analysis of large civil structures: from material multiscale mechanics to structural multiscale mechanics[J]. Mechanical Progress, 2007, 37(3): 321-336. (in Chinese) doi: 10.3321/j.issn:1000-0992.2007.03.001
    [43]
    陆新征, 林旭川, 叶列平. 多尺度有限元建模方法及其应用[J]. 华中科技大学学报(城市科学版), 2008, 25(4): 76-80. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCJ200804022.htm

    LU Xin-zheng, LIN Xu-chuan, YE Lie-ping. Multi scale finite element modeling method and its application[J]. Journal of Huazhong University of science and Technology, 2008, 25(4): 76-80. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WHCJ200804022.htm
    [44]
    王开宇. 基于多点约束的多尺度建模方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.

    WANG Kai-yu. Research on Multi-Scale Modeling Method Based on Multi-Point Constraint[D]. Harbin: Harbin Institute of Technology, 2016. (in Chinese)
    [45]
    GHOSH S, LEE K, MOORTHY S. Two scale analysis of heterogeneous elastic-plastic materials with asymptotic homogenization and Voronoi cell finite element model[J]. Computer Methods in Applied Mechanics and Engineering, 1996, 132(1): 63-116.
    [46]
    SUKUMAR N, TABARRAEI A. Conforming polygonal finite elements[J]. International Journal for Numerical Methods in Engineering, 2004(61): 2045-2066.
    [47]
    FLOATER M S, HORMANN K, KÓS G. A general construction of barycentric coordinates over convex polygons[J]. Advances in Computational Mathematics, 2006, 24(1/2/3/4): 311-331.
    [48]
    BISHOP J E. A displacement‐based finite element formulation for general polyhedra using harmonic shape functions[J]. International Journal for Numerical Methods in Engineering, 2013, 97(1): 1-31.
    [49]
    王勖成, 王爱民. 有限元计算中疏密网格间过渡单元的构造[J]. 清华大学学报(自然科学版), 1999, 39(8): 101-104. doi: 10.16511/j.cnki.qhdxxb.1999.08.026

    WANG Xu-cheng, WANG Ai-min. Construction of transition elements between dense grids in finite element calculation[J]. Journal of Tsinghua University (Natural Science Edition), 1999, 39(8): 101-104. (in Chinese) doi: 10.16511/j.cnki.qhdxxb.1999.08.026
    [50]
    强天驰, 寇晓东, 周维垣. 三维有限元网格加密界面协调方法及在大坝开裂分析中的应用[J]. 岩石力学与工程学报, 2000, 19(5): 562-566. doi: 10.3321/j.issn:1000-6915.2000.05.004

    QIANG Tian-chi, KOU Xiao-dong, ZHOU wei-yuan.3d finite element mesh densification interface coordination method and its application in dam cracking analysis[J]. Chinese Journal of Rock Mechanics and Engineering, 2000, 19(5): 562-566. (in Chinese) doi: 10.3321/j.issn:1000-6915.2000.05.004
    [51]
    钟红, 林皋, 胡志强. 有限元计算中疏密网格过渡方法研究[J]. 计算力学学报, 2007, 24(6): 887-891. doi: 10.3969/j.issn.1007-4708.2007.06.031

    ZHONG Hong, LIN Gao, HU Zhi-qiang. Study on transition method of dense mesh in finite element calculation[J]. Acta Computational Mechanics, 2007, 24(6): 887-891. (in Chinese) doi: 10.3969/j.issn.1007-4708.2007.06.031
    [52]
    QU Y, ZOU D, KONG X, et al. A novel interface element with asymmetric nodes and its application on concrete-faced rockfill dam[J]. Computers and Geotechnics, 2017, 85: 103-116. doi: 10.1016/j.compgeo.2016.12.013
    [53]
    GONG J, ZOU D, KONG X, et al. An extended meshless method for 3D interface simulating soil-structure interaction with flexibly distributed nodes[J]. Soil Dynamics and Earthquake Engineering, 2019, 125: 105688. doi: 10.1016/j.soildyn.2019.05.027
    [54]
    GONG J, ZOU D, KONG X, et al. A coupled meshless-SBFEM-FEM approach in simulating soil-structure interaction with cross-scale model[J]. Soil Dynamics and Earthquake Engineering, 2020, 136: 106214. doi: 10.1016/j.soildyn.2020.106214
    [55]
    GONG J, ZOU D, KONG X, et al. A non-matching nodes interface model with radial interpolation function for simulating 2d soil-structure interface behaviors[J]. International Journal of Computational Methods, 2020, 18(1): 2050023.
    [56]
    LIU J, ZOU D, KONG X. A three-dimensional state-dependent model of soil-structure interface for monotonic and cyclic loadings[J]. Computers and Geotechnics, 2014, 61: 166-177. doi: 10.1016/j.compgeo.2014.05.012
    [57]
    LIU J, ZOU D, KONG X. A two-mechanism soil-structure interface model for three-dimensional cyclic loading[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2020, 44(15): 1-28.
    [58]
    XU B, ZOU D, KONG X, et al. Dynamic damage evaluation on the slabs of the concrete faced rockfill dam with the plastic-damage model[J]. Computers & Geotechnics, 2015, 65(65): 258-265.
    [59]
    LIU J, ZOU D, KONG X. Three-dimensional scaled memory model for gravelly soils subject to cyclic loading[J]. Journal of Engineering Mechanics, 2018, 144(3): 4018001. doi: 10.1061/(ASCE)EM.1943-7889.0001367
    [60]
    XU B, ZOU D, LIU H. Three-dimensional simulation of the construction process of the Zipingpu concrete face rockfill dam based on a generalized plasticity model[J]. Computers and Geotechnics, 2012, 43: 143-154. doi: 10.1016/j.compgeo.2012.03.002
    [61]
    孔宪京, 徐斌, 邹德高, 等. 混凝土面板坝面板动力损伤有限元分析[J]. 岩土工程学报, 2014, 36(9): 1594-1600. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201409007.htm

    KONG Xian-jing, XU Bin, ZOU De-gao, et al. Finite element analysis of dynamic damage of concrete face slab[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(9): 1594-1600. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201409007.htm
    [62]
    孔宪京, 屈永倩, 邹德高, 等. 强震作用下面板堆石坝跨尺度面板开裂演化分析[J]. 岩土工程学报, 2020, 42(6): 989-996. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202006003.htm

    KONG Xian-jing, QU Yong-qian, ZOU De-gao, et al. Cross-scale crack evolution analysis for face slab in concrete faced rockfill dams under strong earthquake[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 989-996. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202006003.htm
    [63]
    SONG C. The Scaled Boundary Finite Element Method[M]. New York: John Wiley & Sons, 2018.
    [64]
    刘钧玉, 林皋, 胡志强. 裂纹面荷载作用下多裂纹应力强度因子计算[J]. 工程力学, 2011, 28(4): 7-12. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201104004.htm

    LIU Jun-yu, LIN Gao, HU Zhi-qiang. Calculation of stress intensity factor of multiple cracks under crack surface load[J]. Engineering Mechanics, 2011, 28(4): 7-12. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201104004.htm
    [65]
    高毅超, 徐艳杰, 金峰, 等. 基于高阶双渐近透射边界的大坝-库水动力相互作用直接耦合分析模型[J]. 地球物理学报, 2013, 56(12): 4189-4196. doi: 10.6038/cjg20131221

    GAO Yi-chao, XU Yan-jie, JIN Feng, et al. Direct coupling analysis model of dam reservoir hydrodynamic interaction based on high order double asymptotic transmission boundary[J]. Chinese Journal of Geophysics. 2013, 56(12): 4189-4196. (in Chinese) doi: 10.6038/cjg20131221
    [66]
    陈灯红, 杜成斌. 结构-地基动力相互作用的时域模型[J]. 岩土力学, 2014, 35(4): 1164-1172. doi: 10.16285/j.rsm.2014.04.038

    CHEN Deng-hong, DU Cheng-bin. Time domain model of structure foundation dynamic interaction[J]. Geotechnical Mechanics, 2014, 35(4): 1164-1172. (in Chinese) doi: 10.16285/j.rsm.2014.04.038
    [67]
    LIN G, LIU J, LI J, et al. A scaled boundary finite element approach for sloshing analysis of liquid storage tanks[J]. Engineering Analysis with Boundary Elements, 2015, 56: 70-80. doi: 10.1016/j.enganabound.2015.02.006
    [68]
    LI P, LIU J, LIN G, et al. A combination of isogeometric technique and scaled boundary method for the solution of the steady-state heat transfer problems in arbitrary plane domain with Robin boundary[J]. Engineering Analysis with Boundary Elements, 2017, 82: 43-56. doi: 10.1016/j.enganabound.2017.05.006
    [69]
    LIU J, ZHANG P, LIN G, et al. Solutions for the magneto-electro-elastic plate using the scaled boundary finite element method[J]. Engineering Analysis with Boundary Elements, 2016, 68: 103-114. doi: 10.1016/j.enganabound.2016.04.005
    [70]
    XU H, ZOU D, KONG X, et al. Study on the effects of hydrodynamic pressure on the dynamic stresses in slabs of high CFRD based on the scaled boundary finite-element method[J]. Soil Dynamics and Earthquake Engineering, 2016, 88: 223-236. doi: 10.1016/j.soildyn.2016.06.003
    [71]
    CHEN K, ZOU D, KONG X. A nonlinear approach for the three-dimensional polyhedron scaled boundary finite element method and its verification using Koyna gravity dam[J]. Soil Dynamics and Earthquake Engineering, 2017, 96: 1-12. doi: 10.1016/j.soildyn.2017.01.028
    [72]
    CHEN K, ZOU D, KONG X, et al. A novel nonlinear solution for the polygon scaled boundary finite element method and its application to geotechnical structures[J]. Computers and Geotechnics, 2017, 82: 201-210. doi: 10.1016/j.compgeo.2016.09.013
    [73]
    ZOU D, CHEN K, KONG X, et al. An enhanced octree polyhedral scaled boundary finite element method and its applications in structure analysis[J]. Engineering Analysis with Boundary Elements, 2017, 84: 87-107. doi: 10.1016/j.enganabound.2017.07.007
    [74]
    CHEN K, ZOU D, KONG X, et al. An efficient nonlinear octree SBFEM and its application to complicated geotechnical structures[J]. Computers and Geotechnics, 2018, 96: 226-245. doi: 10.1016/j.compgeo.2017.10.021
    [75]
    ZOU D, CHEN K, KONG X, et al. An approach integrating BIM, octree and FEM-SBFEM for highly efficient modeling and seismic damage analysis of building structures[J]. Engineering Analysis with Boundary Elements, 2019, 104: 332-346. doi: 10.1016/j.enganabound.2019.03.038
    [76]
    CHEN K, ZOU D, KONG X, et al. Elasto-plastic fine-scale damage failure analysis of metro structures based on coupled SBFEM-FEM[J]. Computers and Geotechnics, 2019, 108: 280-294. doi: 10.1016/j.compgeo.2018.12.030
    [77]
    CHEN K, ZOU D, KONG X, et al. Global concurrent cross-scale nonlinear analysis approach of complex CFRD systems considering dynamic impervious panel-rockfill material-foundation interactions[J]. Soil Dynamics and Earthquake Engineering, 2018, 114: 51-68. doi: 10.1016/j.soildyn.2018.06.027
    [78]
    ZOU D, SUI Y, CHEN K, et al. A cross‐scale refined damage evolution analysis of large commercial aircraft crashing into a nuclear power plant[J]. The Structural Design of Tall and Special Buildings, 2019, 28(16): e1668.
    [79]
    QU Y, ZOU D, KONG X, et al. A flexible various-scale approach for soil-structure interaction and its application in seismic damage analysis of the underground structure of nuclear power plants[J]. Science China Technological Sciences, 2018, 61(7): 1092-1106. doi: 10.1007/s11431-017-9269-7
    [80]
    邹德高, 陈楷, 张仁怡, 等. 基于SBFEM的心墙坝基座跨尺度精细应力分析[J]. 人民长江, 2019, 50(9): 168-174. https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE201909028.htm

    ZOU De-gao, CHEN Kai, ZHANG Ren-yi, et al. Cross scale fine stress analysis of core dam base based on SBFEM[J]. Yangtze River, 2019, 50(9): 168-174. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE201909028.htm
    [81]
    邹德高, 隋翊, 陈楷, 等. 基于Octree-SBFEM跨尺度模型的大型商用飞机撞击核电厂的精细化损伤演化分析[J]. 核动力工程, 2019, 40(5): 140-145. https://www.cnki.com.cn/Article/CJFDTOTAL-HDLG201905026.htm

    ZOU De-gao, SUI Yi, CHEN Kai, et al. Refined damage evolution analysis of large commercial aircraft impacting nuclear power plant based on octree SBFEM cross scale model[J]. Nuclear Power Engineering, 2019, 40(5): 140-145. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HDLG201905026.htm
    [82]
    邹德高, 陈楷, 刘锁, 等. 非线性比例边界有限元在面板坝分析中的应用[J]. 土木与环境工程学报(中英文), 2019, 41(3): 11-18. https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN201903002.htm

    ZOU De-gao, CHEN Kai, LIU Suo, et al. Application of nonlinear scaled boundary polygon element method in analysis of concrete face rockfill dam[J]. Journal of Civil and Environmental Engineering, 2019, 41(3): 11-18. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN201903002.htm
    [83]
    孔宪京, 陈楷, 邹德高, 等. 一种高效的FE-PSBFE耦合方法及在岩土工程弹塑性分析中的应用[J]. 工程力学, 2018, 35(6): 6-14. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201806004.htm

    KONG Xian-jing, CHEN Kai, ZOU De-gao, et al. An efficient FE-PSBFE coupled method and its application to the elasto-plastic analysis of geotechnical engineering structures[J]. Engineering Mechanics, 2018, 35(6): 6-14. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201806004.htm
    [84]
    陈楷, 邹德高, 孔宪京, 等. 多边形比例边界有限单元非线性化方法及应用[J]. 浙江大学学报(工学版), 2017, 51(10): 1996-2004. doi: 10.3785/j.issn.1008-973X.2017.10.014

    CHEN Kai, ZOU De-gao, KONG Xian-jing, et al. Nonlinear method and application of polygonal scaled boundary finite element[J]. Journal of Zhejiang University, 2017, 51(10): 1996-2004. (in Chinese) doi: 10.3785/j.issn.1008-973X.2017.10.014

Catalog

    Article views (444) PDF downloads (516) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return