• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
SHAO Shuai, SHAO Sheng-jun, LI Ning, ZHANG Bin. Dynamic centrifugal model tests on seismic subsidence of loess slopes under earthquake action[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(2): 245-253. DOI: 10.11779/CJGE202102004
Citation: SHAO Shuai, SHAO Sheng-jun, LI Ning, ZHANG Bin. Dynamic centrifugal model tests on seismic subsidence of loess slopes under earthquake action[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(2): 245-253. DOI: 10.11779/CJGE202102004

Dynamic centrifugal model tests on seismic subsidence of loess slopes under earthquake action

More Information
  • Received Date: March 07, 2020
  • Available Online: December 04, 2022
  • The dynamic centrifugal model tests on the loess slope samples with geometric scale of 1∶20, which are taken from a typical slope in Lanzhou, are designed and carried out. The characteristics of seismic dynamic response, stability and deformation of the loess slope are studied systematically. The results show that the acceleration amplification effect of the loess slope increases nonlinearly with the slope height and reaches the maximum at the top of the slope. Under the action of strong earthquakes, the failure of the loess slope shows that there is obvious subsidence at the top of the slope, and a large number of fractures and fissures appear at the shallow stratum, shoulder and slope surface. Due to the seismic subsidence deformations at the shoulder and surface of the slope and the development of the fractures and fissures in the slope, uplift deformation appears at the middle and lower parts of the slope, and they move towards the direction of the slope surface. The potential slip surface is formed by the development of fractures and fissures in the slope, which provides the conditions for the overall slip of the slope.
  • [1]
    黄润秋, 李为乐. “5·12”汶川大地震触发地质灾害的发育分布规律研究[J]. 岩石力学与工程学报, 2008, 27(12): 2585-2592. doi: 10.3321/j.issn:1000-6915.2008.12.028

    HUANG Run-qiu, LI Wei-le. Research on development and distribution rules of geohazards induced by Wenchuan earthquake on 12th May, 2008[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(12): 2585-2592. (in Chinese) doi: 10.3321/j.issn:1000-6915.2008.12.028
    [2]
    WANG L P, ZHANG G. Centrifuge model test study on pile reinforcement behavior of cohesive soil slopes under earthquake conditions[J]. Landslides, 2014, 11(2): 213-223. doi: 10.1007/s10346-013-0388-2
    [3]
    许强, 刘汉香, 邹威, 等. 斜坡加速度动力响应特性的大型振动台试验研究[J]. 岩石力学与工程学报, 2010, 29(12): 2420-2428. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201012009.htm

    XU Qiang, LIU Han-xiang, ZOU Wei, et al. Large-scale shaking table test study of acceleration dynamic responses characteristics of slopes[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(12): 2420-2428. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201012009.htm
    [4]
    MAINANST G, CHAMBON G, JONGMANS D, et al. Shear-wavevelocity drop prior to clayey mass movement in laboratory flume experiments[J]. Engineering Geology, 2015, 192(9): 26-32.
    [5]
    SEED H B. A method for earthquake-resistant design of earth dams[J]. Journal of Soil Mechanics and Foundations Division, 1966, 92(1): 13-41. doi: 10.1061/JSFEAQ.0000823
    [6]
    殷跃平, 王文沛. 论滑坡地震力[J]. 工程地质学报, 2014, 22(4): 586-600. doi: 10.13544/j.cnki.jeg.2014.04.005

    YIN Yue-ping, WANG Wen-pei. Researches on seismic landslide stability analysis[J]. Journal of Engineering Geology, 2014, 22(4): 586-600. (in Chinese) doi: 10.13544/j.cnki.jeg.2014.04.005
    [7]
    NEWMARK N M. Effects of earthquakes on dams and embankments[J]. Géotechnique, 1965, 15(2): 139-160. doi: 10.1680/geot.1965.15.2.139
    [8]
    刘立平, 雷尊宇, 周富春. 地震边坡稳定分析方法综述[J]. 重庆交通大学学报(自然科学版), 2001, 20(3): 83-88. doi: 10.3969/j.issn.1674-0696.2001.03.022

    LIU Li-ping, LEI Zun-yu, ZHOU Fu-chun. The evaluation of seismic slope stability analysis methods[J]. Journal of Chongqing Jiaotong University (Natural Science), 2001, 20(3): 83-88. (in Chinese) doi: 10.3969/j.issn.1674-0696.2001.03.022
    [9]
    言志信, 曹小红, 张刘平, 等. 地震作用下黄土边坡动力响应数值分析[J]. 岩土力学, 2011, 32(增刊2): 610-614. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2011S2101.htm

    YAN Zhi-xin, CAO Xiao-hong, ZHANG Liu-ping, et al. Numerical analysis of loess slope dynamic response under earthquake[J]. Rock and Soil Mechanics, 2011, 32(S2): 610-614. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2011S2101.htm
    [10]
    言志信, 郭斌, 张学东, 等. 黄土边坡动力响应分析[J]. 防灾减灾工程学报, 2012, 32(5): 629-635. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201205019.htm

    YAN Zhi-xin, GUO Bin, ZHANG Xue-dong, et al. Dynamic response analysis of loess slope[J]. Journal of Disaster Prevention and Mitigation Engineering, 2012, 32(5): 629-635. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201205019.htm
    [11]
    邓龙胜, 范文. 黄土边坡动力响应的影响效应研究[J]. 工程地质学报, 2012, 20(4): 483-490. doi: 10.3969/j.issn.1004-9665.2012.04.003

    DENG Long-sheng, FAN Wen. Research on dynamic response effects of loess slope[J]. Journal of Engineering Geology, 2012, 20(4): 483-490. (in Chinese) doi: 10.3969/j.issn.1004-9665.2012.04.003
    [12]
    WANG K L, LIN M L. Initiation and displacement of landslide induced by earthquake—a study of shaking table model slope test[J]. Engineering Geology, 2011, 122(1/2): 106-114.
    [13]
    孙志亮, 孔令伟, 郭爱国. 风干堆积体边坡地震响应的动力离心模型试验[J]. 岩石力学与工程学报, 2019, 36(9): 2102-2112. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201709004.htm

    SUN Zhi-liang, KONG Ling-wei, GUO Ai-guo. Dynamic centrifuge tests on seismic responses of air-dried deposit slopes[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 36(9): 2102-2112. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201709004.htm
    [14]
    BRENNAN A J, THUSYANTHAN N I, MADABHUSHI S P G. Evaluation of shear modulus and damping in dynamic centrifuge tests[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(12): 1488-1497. doi: 10.1061/(ASCE)1090-0241(2005)131:12(1488)
    [15]
    KUTTER B L, JAMES R G. Dynamic centrifuge model tests on clay embankments[J]. Géotechnique, 1989, 39(1): 91-106. doi: 10.1680/geot.1989.39.1.91
    [16]
    TABOADA URTUZUASTEGU V M, MARINE Z, RAMIREZ G, et al. Centrifuge modeling of seismic behavior of a slope in liquefiable soil[J]. Soil Dynamics and Earthquake Engineering, 2002, 22(9/12): 1043-1049.
    [17]
    NG C W W, LI X S, VAN LAAK P A, et al. Centrifuge modeling of loose fill embankment subjected to uniaxial and bi-axial earthquakes[J]. Soil Dynamics and Earthquake Engineering, 2004, 24(4): 305-318.
    [18]
    BRENNAN A J, MADABHUSHI S P G. Amplification of seismic accelerations at slope crests[J]. Canadian Geotechnical Journal, 2009, 46(5): 585-594.
    [19]
    WANG L P, ZHANG G. Centrifuge model test study on pile reinforcement behavior of cohesive soil slopes under earthquake conditions[J]. Landslides, 2014, 11(2): 213-223.
    [20]
    翁效林, 熊元克, 裴凯. 黄土震陷变形特征的离心模型试验研究[J]. 矿物学报, 2006, 26(4): 460-464. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB200604015.htm

    WENG Xiao-lin, XIONG Yuan-ke, PEI Kai. Study of loess seismic subsidence deformation characteristics by centrifuge scale-down test[J]. Acta Mineralogica Sinica, 2006, 26(4): 460-464. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB200604015.htm
    [21]
    涂杰文, 刘红帅, 汤爱平, 等. 基于离心振动台的堆积型滑坡加速度响应特征[J]. 岩石力学与工程学报, 2015, 34(7): 282-290. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201507009.htm

    TU Jie-wen, LIU Hong-shuai, TANG Ai-ping, et al. Acceleration response characteristics of colluvium landslide based on centrifugal shaking table model test[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(7): 282-290. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201507009.htm
    [22]
    王兰民, 蒲小武, 吴志坚, 等. 地震和降雨耦合作用下黄土边坡动力响应的振动台试验研究[J]. 岩土工程学报, 2018, 40(7): 1287-1293. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201807019.htm

    WANG Lan-min, PU Xiao-wu, WU Zhi-jian, et al. Shaking table tests on dynamic response of loess slopes under coupling effects of earthquakes and rainfalls[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(7): 1287-1293. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201807019.htm
    [23]
    陈金昌, 王兰民, 王平, 等. 基于振动台试验的纯黄土边坡动力响应研究[J]. 地震工程学报, 2020, 42(2): 529-535. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ202002036.htm

    CHEN Jin-chang, WANG Lan-min, WANG Ping, et al. Dynamic response of loess based on the shake table test[J]. China Earthquake Engineering Journal, 2020, 42(2): 529-535. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ202002036.htm
    [24]
    叶帅华, 赵壮福, 朱彦鹏. 框架锚杆支护黄土边坡大型振动台模型试验研究[J]. 岩土力学, 2019, 40(11): 4240-4248. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201911014.htm

    YE Shuai-hua, ZHAO Zhuang-fu, ZHU Yan-peng. Large-scale shaking table experiment of loess slope supported by frame anchors[J]. Rock and Soil Mechanic, 2019, 40(11): 4240-4248. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201911014.htm
    [25]
    张泽林, 吴树仁, 王涛, 等. 地震作用下黄土滑坡加速度深度放大效应及震后变形模式研究[J]. 土木工程学报, 2018, 51(4): 102-120. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201804013.htm

    ZHANG Ze-lin, WU Shu-ren, WANG Tao, et al. Study on acceleration depth amplification effect and deformation model of loess landslide under earthquakes[J]. China Civil Engineering Journal, 2018, 51(4): 102-120. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201804013.htm
    [26]
    樱井彰雄. 地盘耐震学[M]. 东京: 丸善出版社, 1999.

    SAKURAI A. Seismic Ground Engineering[M]. Tokyo: Tokyo Maruzen Publication, 1999. (in Chinese)
  • Cited by

    Periodical cited type(10)

    1. 何梓雷,蒋关鲁,冯海洲,陈虹羽,郭玉丰,何晓龙,李杰. 基于变形的降雨后地震基覆型边坡劣化特性与机制研究. 岩土力学. 2024(06): 1789-1802 .
    2. 王睿,王兰民,周燕国,王刚. 土动力学与岩土地震工程. 土木工程学报. 2024(07): 71-89+105 .
    3. 钱法桥,邓亚虹,刘凡,门欢. 黄土地震滑坡研究综述与展望. 中国地质灾害与防治学报. 2024(05): 5-20 .
    4. 李超,管龙华,何健健,汪玉冰. 边坡主震响应方向性及余震效应的离心模型试验. 岩土工程学报. 2023(06): 1285-1293 . 本站查看
    5. 吴义文,李孝波,周兴浩,段俊杰. 黄土斜坡地震稳定性研究的若干方法. 防灾科技学院学报. 2023(02): 63-71 .
    6. 王华席,王国义,李宗奇,杨兵,宋松科. 地震作用下粉土边坡的失稳特征及规律研究. 路基工程. 2023(05): 82-88 .
    7. 马明康,吕拥军,郭旭,武敏,任宇航. 采空区影响下猫儿沟露天矿边坡稳定性研究. 露天采矿技术. 2022(01): 69-71+75 .
    8. 张兴臣,梁庆国,孙文,曹小平. 地震作用下黄土边坡动力响应的时频特征分析. 地震工程学报. 2022(05): 1090-1099 .
    9. 王松,郭庆,徐立新,甄凯军,许鑫. 矿渣-水玻璃固化黄土的特性研究. 新型建筑材料. 2022(10): 114-118 .
    10. 唐雪江. 爆破开挖对边坡稳定性影响研究. 陕西水利. 2021(10): 216-217+235 .

    Other cited types(26)

Catalog

    Article views (344) PDF downloads (191) Cited by(36)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return