• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
DENG Huang-shi, FU He-lin, SHI Yue. Calculation of surface settlement caused by excavation of shield tunnels with small turning radius[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(1): 165-173. DOI: 10.11779/CJGE202101019
Citation: DENG Huang-shi, FU He-lin, SHI Yue. Calculation of surface settlement caused by excavation of shield tunnels with small turning radius[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(1): 165-173. DOI: 10.11779/CJGE202101019

Calculation of surface settlement caused by excavation of shield tunnels with small turning radius

More Information
  • Received Date: June 14, 2020
  • Available Online: December 04, 2022
  • The settlement deformation caused by the construction of shield tunnels with small turning radius curve is very complicated, but the corresponding analytical method of deformation prediction is still not clear. According to the results of the previous researches, the formation loss model for construction of shield tunnels with curved section is established. Based on the mirror image method and the Mindlin solution, the formula for calculating the surface settlement caused by the excavation of shield tunnels with curved section is derived and applied to the calculation of engineering examples. Finally, the surface deformation laws and influencing factors of construction of shield tunnels with curved section are analyzed. The results show that the model for formation loss of curved section is reasonable and the derived formula is applicable to practical projects. The longitudinal surface settlement varies greatly in the range of 3 times the diameter of the hole close to the cutter head, a slight bulge on the surface within 3 times the hole diameter in front of the cutter head, and the maximum settlement position is located at 3 ~ 4 times the hole diameter behind the cutter head. The surface transverse settlement groove is asymmetrically distributed, and the maximum settlement position is at the inner side of the bend, about 1 time the hole diameter from the center line of the cutter disc. The surface settlement caused by formation loss is mainly affected by the turning radius and the length of the shield and shell, and the displacement degree of the surface transverse settlement groove is mainly affected by the diameter of the cutter disc.
  • [1]
    魏纲, 张世民, 齐静静, 等. 盾构隧道施工引起的地面变形计算方法研究[J]. 岩石力学与工程学报, 2006, 25(增刊1): 3317-3323. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2006S1111.htm

    WEI Gang, ZHANG Shi-min, QI Jing-jing, et al. Study on calculation method of ground deformation induced by tunnel construction[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(S1): 3317-3323. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2006S1111.htm
    [2]
    PECK R B. Deep excavation and tunneling in soft ground[C]//Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering, 1969, Mexico: 225-281.
    [3]
    马险峰, 王俊淞, 李削云, 等. 盾构隧道引起地层损失和地表沉降的离心模型试验研究[J]. 岩土工程学报, 2012, 34(5): 942-947. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201205027.htm

    MA Xian-feng, WANG Jun-song, LI Xiao-yun, et al. Centrifuge modeling of ground loss and settlement caused by shield tunnelling in soft ground[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(5): 942-947. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201205027.htm
    [4]
    张洋, 刘陕南, 吴俊, 等. 盾构隧道掘进时地层参数变化对地表沉降的敏感性研究[J]. 现代隧道技术, 2019, 56(4): 127-134. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201904021.htm

    ZHANG Yang, LIU Shan-nan, WU Jun, et al. Sensitivity and its impact of strata parameters on ground surface settlements during shield tunnelling[J]. Modern Tunnelling Technology, 2019, 56(4): 127-134. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201904021.htm
    [5]
    张明聚, 张振波, 陈锋. 高压富水碎裂状岩层小半径曲线盾构隧道施工技术[J]. 现代隧道技术, 2018, 55(6): 197-203, 209. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201806030.htm

    ZHANG Ming-ju, ZHANG Zhen-bo, CHEN Feng. Construction techniques for the small-radius curved shield tunnels in water-rich fractured stratum with high pressure[J]. Modern Tunnelling Technology, 2018, 55(6): 197-203, 209. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201806030.htm
    [6]
    ZHANG Ming-ju, LI Shao-hua, LI Peng-fei. Numerical analysis of ground displacement and segmental stress and influence of yaw excavation loadings for a curved shield tunnel[J]. Computers and Geotechnics, 2020, 118: 103325. doi: 10.1016/j.compgeo.2019.103325
    [7]
    张雪辉, 陈吉祥, 白云, 等. 类矩形土压平衡盾构施工引起的地表变形[J]. 浙江大学学报(工学版), 2018, 52(2): 317-324. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201802014.htm

    ZHANG Xue-hui, CHEN Ji-xiang, BAI Yun, et al. Ground surface deformation induced by quasi-rectangle EPB shield tunneling[J]. Journal of Zhejiang University (Engineering Science), 2018, 52(2): 317-324. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201802014.htm
    [8]
    吴昌胜, 朱志铎, 宋世攻, 等.软土地层大直径泥水盾构掘进引起的地面变形分析[J]. 岩土工程学报, 2019, 41(增刊1): 169-172. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2019S1044.htm

    WU Chang-sheng, ZHU Zhi-duo, SONG Shi-gong, et al. Ground settlement caused by large-diameter slurry shield during tunnel construction in soft soils[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S1): 169-172. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2019S1044.htm
    [9]
    孙捷城, 路林海, 王国富, 等. 小半径曲线盾构隧道掘进施工地表变形计算[J]. 中国铁道科学, 2019, 40(5): 63-72. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201905010.htm

    SUN Jie-cheng, LU Lin-hai, WANG Guo-fu, et al. Calculation method of surface deformation induced by small radius curve shield tunneling construction[J]. China Railway Science, 2019, 40(5): 63-72. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201905010.htm
    [10]
    郝润霞. 软土地区曲线段盾构隧道超挖量与注浆量分析[J]. 地下空间与工程学报, 2013, 9(5): 1132-1136. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201305031.htm

    HAO Run-xia. Analysis of over-excavation volume and synchronous grouting volume for the shield tunnel at curve section of soft soil area[J]. Chinese Journal of Underground Space and Engineering, 2013, 9(5): 1132-1136. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201305031.htm
    [11]
    陈剑, 李智明. 急曲线隧道盾构超挖量及铰接角的理论算法[J]. 中国公路学报, 2017, 30(8): 66-73. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201708007.htm

    CHEN Jian, LI Zhi-ming. Theoretical algorithm for over-excavated volume and articulation angle during shield tunneling along sharp curves[J]. China Journal of Highway and Transport, 2017, 30(8): 66-73. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201708007.htm
    [12]
    SAGASETA C. Analysis of undraind soil deformation due to ground loss[J]. Géotechnique, 1987, 37(3): 301-320.
    [13]
    姜忻良, 赵志民. 镜像法在隧道施工土体位移计算中的应用[J]. 哈尔滨工业大学学报, 2005(6): 801-803. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX200506024.htm

    JIANG Xin-liang, ZHAO Zhi-min. Application of image method in calculation of tunneling-induced soil displacement[J]. Journal of Harbin Institute of Technology, 2005(6): 801-803. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX200506024.htm
    [14]
    MINDLIN R D. Force at a point in the interior of a semi-infinite solid[J]. Physics, 1936, 7(5): 195-202.
    [15]
    梁荣柱, 夏唐代, 林存刚, 等. 盾构推进引起地表变形及深层土体水平位移分析[J]. 岩石力学与工程学报, 2015, 34(3): 583-593. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201503017.htm

    LIANG Rong-zhu, XIA Tang-dai, LIN Cun-gang, et al. Analysis of ground surface displacement and horizontal displacement of deep soil induced by shield advance[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(3): 583-593. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201503017.htm
    [16]
    魏纲, 周洋, 魏新江. 盾构隧道施工引起的工后地面沉降研究[J]. 岩石力学与工程学报, 2013, 32(增刊1): 2891-2896. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2013S1040.htm

    WEI Gang, ZHOU Yang, WEI Xin-jiang. Research on post-construction surface settlement caused by shield tunneling[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(S1): 2891-2896. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2013S1040.htm
  • Related Articles

    [1]RONG Teng-long, LIU Ke-liu, ZHOU Hong-wei, GUAN Can, CHEN Yan, REN Wei-guang. Permeability evolution of deep coal under mining stress[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1106-1114. DOI: 10.11779/CJGE202206015
    [2]ZHANG Pei-sen, YAN Wei, ZHANG Wen-quan, SHEN Baotang. Mechanism of water inrush due to damage of floor and fault activation induced by mining coal seam with fault defects under fluid-solid coupling mode[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(5): 877-889. DOI: 10.11779/CJGE201605013
    [3]WANG Meng, NIU Yu-he, YU Yong-jian, SUN Shang-xu. Experimental research on characteristics of deformation and failure of surrounding rock of roadway in deep mine under influence of principal stress evolution[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(2): 237-244. DOI: 10.11779/CJGE201602006
    [4]ZHANG Guo-feng, ZHU Wei, ZHAO Pei. In-situ stress measurements and analysis of action of geological structures of deep coal mines in Xuzhou[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(12): 2318-2324.
    [5]ZHU Shu-yun, CAO Ding-tao, YUE Zun-cai, JIANG Zhen-quan, ZHAO Lian-tao, YU Xu-lei. Comprehensive measurement of characteristics of deformation and failure of extra-thick coal seam floor induced by fully mechanized top-coal mining[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1931-1938.
    [6]JU Yang, ZUO Jianping, SONG Zhenduo, TIAN Lulu, ZHOU Hongwei. Numerical simulation of stress distribution and displacement of rock strata of coal mines by means of DDA method[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(2): 268-273.
    [7]WANG Lianguo, SONG Yang. Combined ANN forecast of water-inrush from coal floor[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(4): 502-505.
    [8]XIAO Hongtian, WEN Xinglin, ZHANG Wenquan, LI Baiying. In situ measurement of floor strata displacements in slice mining[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(1): 71-74.
    [9]Wang Jingming. In situ measurement and physical analogue on water inrush from coal floor induced by progressive intrusion of artesian water into protective aquiclude[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(5): 546-549.
    [10]Qian Minggao, Miao Xiexing, Li Liangjie. Mechanism for the Fracyure Behaviours 0f Main Floor in Longwall Mining[J]. Chinese Journal of Geotechnical Engineering, 1995, 17(6): 55-62.
  • Cited by

    Periodical cited type(22)

    1. 赫连腾,张丰涛. 快掘扰动下巷道围岩变形控制技术研究. 现代矿业. 2024(02): 210-213 .
    2. 双海清,辛越强,李树刚,林海飞,周斌,尚英智,刘思博. 基于关键层理论的切顶留巷下覆岩裂隙分布特征研究. 煤炭科学技术. 2024(05): 102-113 .
    3. 李鹏飞. 近距离煤层采空区下开采底板破坏规律研究. 山东煤炭科技. 2024(06): 123-127+133 .
    4. 王俊超. 强矿压永久巷道支护失效分析与多层次耦合控制对策. 煤炭与化工. 2024(10): 6-11 .
    5. 弓海军,刘一洪,赵洪宝,李岳,荆士杰. 采场底板裂隙扩展的分区特征及其临界应力条件. 中国矿业大学学报. 2024(06): 1132-1143 .
    6. 黄琪嵩,许波,冯俊军,林晓飞,程久龙,彭俊. 考虑顶板断裂动载作用的采场底板破坏深度研究. 煤田地质与勘探. 2024(12): 13-24 .
    7. 卢方超,张学博,高建良. 倾斜特厚煤层上分层开采时下分层煤体载荷及渗透率演化规律研究. 矿业安全与环保. 2023(02): 14-20 .
    8. 韩宇峰,王兆会,唐岳松. 大采高工作面支架刚度对煤壁稳定性的影响效应研究. 煤炭科学技术. 2023(03): 1-9 .
    9. 孟川杰. 基于虚拟影像探查的深部裂隙岩体储水分布探测研究. 中国测试. 2022(03): 53-58 .
    10. 池秀文,谢宇,陈东方,汪宗英,邓学翰,赵龙. 基于颗粒流的层状矿岩细观参数标定研究. 矿业研究与开发. 2022(10): 113-118 .
    11. 兰红,郑禄林,陈庆港,林健云,邱青,赵禹,田友稳. 动静载荷下含软弱夹层巷道围岩稳定性分析. 煤矿安全. 2022(12): 241-246+252 .
    12. 李巍,阮泽宇,郭亚超,吴来伟,张鹏,余宏. 基于数值模拟分析的上邻近煤层底板损伤特征研究. 矿业研究与开发. 2021(03): 70-74 .
    13. 岳喜占,涂敏,李迎富,张劲松,高亮. 近距离煤层开采遗留边界煤柱下底板巷道采动附加应力计算. 采矿与安全工程学报. 2021(02): 246-252+259 .
    14. 杨鹏,杨伟峰,张鑫全,王振荣,杨茂林. 基于信息熵的采动覆岩应力动态演化与水害辨识. 煤炭学报. 2021(09): 3006-3014 .
    15. 曹淑良,杨林,陈健. 华恒矿业双大巷跨采技术及巷道加固支护效果分析. 现代矿业. 2020(01): 73-76+82 .
    16. 庞义辉,王国法,李冰冰. 深部采场覆岩应力路径效应与失稳过程分析. 岩石力学与工程学报. 2020(04): 682-694 .
    17. 孙艺丹,杨逾,孙博一,李珉,孙浩翔. 动力扰动下巷道围岩变形影响因素敏感性分析. 煤炭科学技术. 2020(05): 57-62 .
    18. 杨逾,孙艺丹,张国赟. 动载下巷道围岩微震响应特征及支护研究. 中国安全生产科学技术. 2020(06): 73-79 .
    19. 杨仁树,朱晔,李永亮,李炜煜. 层状岩体中巷道底板应力分布规律及损伤破坏特征. 中国矿业大学学报. 2020(04): 615-626+645 .
    20. 毕鹏,魏文胜. 赵固二矿非对称底鼓破坏规律研究. 煤. 2020(10): 8-11+14 .
    21. 牛田瑞,陈健,曹峰. 近距离煤层采动及构造对预掘工作面回撤通道的影响. 煤炭科学技术. 2020(S2): 47-52 .
    22. 谢和平. 深部岩体力学与开采理论研究进展. 煤炭学报. 2019(05): 1283-1305 .

    Other cited types(20)

Catalog

    Article views (293) PDF downloads (251) Cited by(42)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return