• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHOU Xiang-yun, SUN De-an, LIN Yu-liang. Canister spacing in a high level radioactive nuclear waste repository based on heat conduction[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(11): 2069-2077. DOI: 10.11779/CJGE202011012
Citation: ZHOU Xiang-yun, SUN De-an, LIN Yu-liang. Canister spacing in a high level radioactive nuclear waste repository based on heat conduction[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(11): 2069-2077. DOI: 10.11779/CJGE202011012

Canister spacing in a high level radioactive nuclear waste repository based on heat conduction

More Information
  • Received Date: August 18, 2019
  • Available Online: December 05, 2022
  • One of the core problems in the design of canister spacing in the repository for disposing high-level radioactive waste is the evolution of the temperature field. On the basis of the layered thermal analysis model for a single waste canister, the expression for temperature increment at any position of surrounding rock in the repository is obtained through the superposition principle. The Laplace domain solution is numerically inverted by the Crump method, and the near-field temperature evolution of the repository under multi-waste canister exothermic system is obtained. Under the adjacent tunnel spacing of 40 m, the initially estimated value of the waste canister spacing is determined by the line graph of the peak temperature of the waste canister surface, the thermal conductivity of the rock and the waste canister spacing. Finally, the influences of the relevant parameters on the surface temperature of the waste canister are analyzed. The results show that the peak temperature of the waste canister surface appeares in the 6th year under the exothermic condition of a single waste canister, and the peak temperature appeares in the 80th year under the multi-waste canister exothermic system. Taking the thermal conductivity of 2.4 W/(m×K) and 2.8 W/(m×K) for the rock as examples, the appropriate spacing of waste canisters is 12.2 and 13.5 m, respectively. The greater the waste canister spacing, the greater the thermal conductivity of bentonite and rock, the smaller the peak temperature of the waste canister surface will be. The thicker the bentonite layer, the less the heat flux inside the waste canister will spread out. The research results can provide a reference for the dimensioning design and safety assessment of the repository.
  • [1]
    WERME L. Design Premises for Canister for Spent Nuclear Fuel[R]. SKB TR-98-08. Stockholm: Svensk Kärnbränslehantering AB, 1998.
    [2]
    CARSLAW H S, JAWGER J C. Conduction of Heat in Solids[M]. Oxford: Clarendon Press, 1959: 353.
    [3]
    HÖKMARK H, FÄLTH B. Thermal dimensioning of the deep repository. SKB TR-03-09[R]. Stockholm: Svensk Kärnbränslehantering AB, 2003.
    [4]
    IKONEN K. Thermal Analysis of Repository for Spent EPR-type Fuel[R]. Posiva Report POSIVA 2005-06. Olkiluoto: Posiva Oy, 2005.
    [5]
    刘东东, 项彦勇. 高放射核废处置库温度场的分布线热源解析模型[J]. 岩石力学与工程学报, 2019, 38(增刊1): 2816-2822. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2019S1022.htm

    LIU Dong-dong, XIANG Yan-yong. A distributed line heat-source analytical model for the temperature field of a high level nuclear waste repository[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(S1): 2816-2822. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2019S1022.htm
    [6]
    CHOI H J, LEE M, LEE J Y. Preliminary conceptual design of a geological disposal system for high-level wastes from the pyroprocessing of PWR spent fuels[J]. Nuclear Engineering and Design, 2011, 241: 3348-3356. doi: 10.1016/j.nucengdes.2011.06.013
    [7]
    SIZGEK G D. Three-dimensional thermal analysis of in-floor type nuclear waste repository for a ceramic waste form[J]. Nuclear Engineering and Design, 2005, 235: 101-109. doi: 10.1016/j.nucengdes.2004.09.010
    [8]
    刘文岗, 王驹, 周宏伟, 等. 高放废物处置库花岗岩热-力耦合模拟研究[J]. 岩石力学与工程学报, 2009, 28(增刊1): 2875-2883. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2009S1045.htm

    LIU Wen-gang, WANG Ju, ZHOU Hong-wei, et al. Coupled thermo-mechanical analysis of granite for high-level radioactive waste repository[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(S1): 2875-2883. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2009S1045.htm
    [9]
    刘月妙, 王驹, 蔡美峰, 等. 热-力耦合条件下高放废物处置室间距研究[J]. 铀矿地质, 2009, 25(6): 373-379. doi: 10.3969/j.issn.1000-0658.2009.06.009

    LIU Yue-miao, WANG Ju, CAI Mei-feng, et al. Study on disposal pit space for high-level radioactive waste in thermal- mechanical coupling condition[J]. Uranium Geology, 2009, 25(6): 373-379. (in Chinese) doi: 10.3969/j.issn.1000-0658.2009.06.009
    [10]
    陈永贵, 贾灵艳, 叶为民, 等. 施工接缝对缓冲材料水-力特性影响研究进展[J]. 岩土工程学报, 2017, 39(1): 138-147. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201701014.htm

    CHEN Yong-gui, JIA Ling-yan, YE Wei-min, et al. Advances in hydro-mechanical behaviors of buffer materials under effect of technological gaps[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(1): 138-147. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201701014.htm
    [11]
    SALO J P, KUKKOLA T. Bentonite pellets, an alternative buffer material for spent fuel canister deposition holes[C]//NEA/CEC Workshop “Sealing of Radioactive Waste Repositories”, 1989, Paris.
    [12]
    WANG J. Deep geological disposal of high level radioactive waste in china: latest progress by 2007, Chinese-German workshop on radioactive waste disposal[R]. Beijing: Beijing Research Institute of Uranium Geology, 2007.
    [13]
    JNC. H12: Project to establish the scientific and technical basis for HLW disposal in Japan[R]. Project Overview Report. Japan: Japan Nuclear Cycle Development Institute (JNC TN1410 2000-001), Naka-gun, Ibaraki Country, 2000.
    [14]
    THUNVIK R, BRAESTER C. Heat Propagation From a Radioactive Waste Repository[R]. SKB TR-91-61. Stockholm: Svensk Kärnbränslehantering AB, 1991.
    [15]
    XU Y S, SUN D A, ZENG Z T, et al. Temperature dependence of apparent thermal conductivity of compacted bentonite as buffer material for high-level radioactive waste repository[J]. Applied Clay Science, 2019, 174: 10-14. doi: 10.1016/j.clay.2019.03.017
    [16]
    POSIVA and SKB. Safety functions, performance targets and technical design requirements for a KBS-3V[R]. Posiva SKB Report 01. Stockholm: Svensk Kärnbränslehantering AB, 2017.
    [17]
    KUKKONEN I. Thermal Properties of the Olkiluoto Mica Gneiss: Results of Laboratory Measurements[R]. Posiva: Posiva Working Report POSIVA 2000-40. 2000.
    [18]
    CRUMP K S. Numerical inversion of Laplace transforms using a Fourier series approximation[J]. Journal of the Association for Computing Machinery, 1976, 23(1): 89-96. doi: 10.1145/321921.321931
    [19]
    CLAESSON J, PROBERT T. Thermoelastic stress due to a rectangular heat source in a semi-infinite medium- Presentation of an analytical solution[J]. Engineering Geology, 1996, 49(3): 223-229.
    [20]
    HÖKMARK H, LÖNNQVIST M, KRISTENSSON O. Strategy for Thermal Dimensioning of the Final Repository for Spent Nuclear Fuel[R]. SKB Rapport R-09-04. Stockholm: Svensk Kärnbränslehantering AB, 2009.
    [21]
    CHO W J, KIM G Y. Reconsideration of thermal criteria for Korean spent fuel repository[J]. Annals of Nuclear Energy, 2016, 88: 73-82.

Catalog

    Article views (289) PDF downloads (93) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return