• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
JIANG Ming-jing, LÜ Lei, LI Li-qing, HUANG Wei. Bearing properties of TJ-M1 Mars soil simulant[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1783-1789. DOI: 10.11779/CJGE202010002
Citation: JIANG Ming-jing, LÜ Lei, LI Li-qing, HUANG Wei. Bearing properties of TJ-M1 Mars soil simulant[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1783-1789. DOI: 10.11779/CJGE202010002

Bearing properties of TJ-M1 Mars soil simulant

More Information
  • Received Date: December 10, 2019
  • Available Online: December 07, 2022
  • The mechanical and engineering behaviors of Mars soils play an important role in Mars exploration, which is one of the main objects in Mars exploration. The plate loading tests (PLT) on Mars soil simulants can be used to investigate the engineering properties of real Mars soils, which can serve for the safe loading of Mars probe. For this aim, the TJ-M1 Mars soil simulant is developed, on which a series of cone penetration tests (CPT) and plate loading tests are carried out. The experimental data are further analyzed with the existing empirical formula which relate the data of cone penetration tests and plate loading tests on sands in order to choose a suitable empirical formulas for Mars soils. Firstly, a 6 m×6 m×1.25 m (length × width × height) testbed is constructed, and paved in five layers. Then 8 cone penetration tests and 2 plate load tests are performed symmetrically on this testbed. Finally, the bearing capacity data are compared with those predicted by the Terzaghi classical correction formula and 11 empirical formulas relating CPT and PLT results for medium-dense sand. The results show that the bearing capacity from the Terzaghi classical correction formula is obviously smaller than the experimental value, while the empirical formula ([R]=80Ps+31.8) can be used to predict the bearing capacity of Mars soils from CPT data approximately.
  • [1]
    耿言, 周继时, 李莎, 等. 中国首次火星探测任务[J]. 深空探测学报, 2018, 5(5): 399-405. doi: 10.15982/j.issn.2095-7777.2020.20200043

    GENG Yan, ZHOU Ji-shi, LI Sha, et, al. Review of first Mars exploration mission in China[J]. Journal of Deep Space Exploration, 2018, 5(5): 399-405. (in Chinese) doi: 10.15982/j.issn.2095-7777.2020.20200043
    [2]
    MOORE H J, CLOW G D, HUTTON RE. A summary of Viking sample-trench analyses for angles of internal friction and cohesions[J]. Journal of Geophysical Research Atmospheres, 1982, 87(B12): 10043-10050. doi: 10.1029/JB087iB12p10043
    [3]
    SHAW A, ARVIDSON R E, BONITZ R, et, al. Phoenix soil physical properties investigation[J]. Journal of Geophysical Research Planets, 2009, 114(E1): 1-19.
    [4]
    季江徽, 黄秀敏. “洞察号”启程探索火星内部世界[J]. 科学通报, 2018, 63(26): 2678-2685. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201826003.htm

    JI Jiang-hui, HUANG Xiu-min. Insight probe set out to explore the inner world of Mars[J]. Science China Press, 2018, 63(26): 2678-2685. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201826003.htm
    [5]
    MOORE H J, BICKLER D B, CRISP J A, et, al. Soil-like deposits observed by Sojourner, the Pathfinder rover[J]. Journal of Geophysical Research, 1999, 104(E4): 8729-8746. doi: 10.1029/1998JE900005
    [6]
    ARVIDSON R E. Localization and physical properties experiments conducted by Spirit at Gusev Grater[J]. Science, 2004, 305(5685): 821-824. doi: 10.1126/science.1099922
    [7]
    ARVIDSON R E, ARVIDSON R C, BARTLETT P B, et, al. Localization and physical property experiments conducted by Opportunity at Meridiani Planum[J]. Science, 2005, 306(5702): 1730-1733.
    [8]
    GROTZINGER J P, JOY C, ASHWIN R, et, al. Mars Science laboratory mission and science investigation[J]. Space Science Reviews, 2012, 170(1/2/3/4): 5-56.
    [9]
    GROSS F B, SASHA B, CARLOS I, et al. JSC Mars-1 Martian regolith simulant particle charging experiments in a low pressure environment[J]. Journal of Electrostatics, 2001, 53(4): 257-266. doi: 10.1016/S0304-3886(01)00152-8
    [10]
    GROSS F B. JSC Mars-1 Martian regolith simulant particle-charging experiments in the presence of AC and DC corona fields[J]. Journal of Electrostatics, 2003, 58(S1/2): 147-156.
    [11]
    PETERS G H, WILLIAM A, GREGORY H, et, al. Mojave Mars simulant-characterization of a new geologic Mars analog[J]. Icarus, 2008, 197(2): 470-479. doi: 10.1016/j.icarus.2008.05.004
    [12]
    NORNBERG P, GUNNLAUHSSON H P, MERRISON J P, et, al. Salten SkovI: a Martian magnetic dust analogue[J]. Planet Space Science, 2009, 57(5/6): 628-631.
    [13]
    BRUNSKILL C, PATEL N, GOUACHE T P, et, al. Characterisation of Martian soil simulants for the ExoMars rover testbed[J]. Journal of Terramechanics, 2011, 46(6): 419-438.
    [14]
    ELLERY A, PATEL N, RICHTER L, et, al. ExoMars rover chassis analysis and design[C]//Proceedings of the 8th International Symposium on Artificial Intelligence, Robotics and Automation in Space, ESTEC, 2005, The Netherlands.
    [15]
    刘汉生. PSI HX系列模拟火星土壤的制备和特性[C]//中国矿物岩石地球化学学会第17届学术年会论文摘要集2019, 杭州.

    LIU Han-sheng. PSI HX series the preparation and properties ofMars soil simulants[C]//Abstracts of the 17th annual meeting papers of Chinese Society for Mineralogy Petrology and Geochemistry, 2019, Hang Zhou. (in Chinese)
    [16]
    党兆龙, 陈百超. 火星土壤物理力学特性分析[J]. 深空探测学报, 2016, 3(2): 129-133, 144. doi: 10.15982/j.issn.2095-7777.2016.02.005

    DANG Zhao-long, CHEN Bai-chao. Analysis on physical and mechanical properties of Martian soil[J]. Journal of Deep Space Exploration, 2016, 3(2): 129-133, 144. (in Chinese). doi: 10.15982/j.issn.2095-7777.2016.02.005
    [17]
    ZENG Xiao-jia, LI Xiong-yao, WANG Shi-jie, et, al. JMSS-1: a new Martian soil simulant[J]. Earth Planets & Space, 2015, 67(1): 72.
    [18]
    刘兴杰, 苏波, 江磊, 等. 火星表面土壤力学性能参数研究[J]. 载人航天, 2016, 22(4): 459-465. doi: 10.3969/j.issn.1674-5825.2016.04.009

    LIU Xing-jie, SU Bo, JIANG Lei, et, al. Research on soil mechanical properties of Martian surface soil[J]. Manned Spaceflight, 2016, 22(4): 459-465. (in Chinese) doi: 10.3969/j.issn.1674-5825.2016.04.009
    [19]
    蒋明镜, 戴永生, 张熇, 等. TJ-1模拟月壤承载特性的现场试验研究[J]. 岩土力学, 2013, 34(6): 1529-1535. doi: 10.16285/j.rsm.2013.06.001

    JIANG Ming--jing, Dai Yong-sheng, ZHANG He, et, al. Field experimental research on bearing propertiesof TJ-1 lunar soil simulant[J]. Rock and Soil Mechanic, 2013, 34(6): 1529-1535. (in Chinese) doi: 10.16285/j.rsm.2013.06.001
    [20]
    JIANG Ming-jing, XI Bang-lu, BLASIO F V, et al. Physical model tests of the bearing behavior of Tongji-1 Lunar soil simulant[J]. Journal of Aerospace Engineering, 2019, 32(2): 04018150. doi: 10.1061/(ASCE)AS.1943-5525.0000959
    [21]
    梁允尚. 对静力触探地基承载力公式的分析研究[J]. 岩土工程学报, 1987, 9(4): 78-83. doi: 10.3321/j.issn:1000-4548.1987.04.009

    LIANG Yun-shang. The study of the bearing capacityformula of CPT[J]. Chinese Journal of Geotechnical Engineering. 1987, 9(4): 78-83. (in Chinese) doi: 10.3321/j.issn:1000-4548.1987.04.009
    [22]
    王传焕. 用静力触探确定天然地基的极限承载力[J]. 铁道勘察, 2006(3): 34-36. doi: 10.3969/j.issn.1672-7479.2006.03.014

    WANG Chuan-huan. The determination of the ultimatebearing capacity of natural subsoil by cone penetrationtest[J]. Railway Investigation and Surveying, 2006(3): 34-36. (in Chinese) doi: 10.3969/j.issn.1672-7479.2006.03.014
    [23]
    建筑地基基础设计规范:GB50007—2011[S]. 2011.

    Code for Design of Building Foundation: GB50007—2011[S]. 2011. (in Chinese)
    [24]
    岩土工程勘察规范:GB50021-2009[S]. 2009.

    Code for Investigation of Geotechnical Engineering: GB50021-2009[S]. 2009. (in Chinese)
    [25]
    BOLTON M D, GUI M W. The Study of Relative Density and Boundary Effect for Cone Penetration Tests in Centrifuge Modeling[R]. Cambridge: Department of Engineering, Cambridge University, 1987.
    [26]
    高大钊. 土力学与基础工程[M]. 北京: 中国建筑工业出版社, 1999.

    GAO Da-zhao. Soil Mechanics and Foundation Engineering[M]. Beijing: China Architecture & Building Press, 1999. (in Chinese)
    [27]
    静力触探使用技术暂行规定(试用)[S]. 1980.

    Interim Provisions on Cone Penetration Technology (Trial)[S]. 1980. (in Chinese)
    [28]
    唐贤强, 叶启民. 静力触探[M]. 北京: 中国铁道出版社, 1981: 7-9.

    TANG Xian-qiang, YE Qi-min. Cone Penetration Test[M]. Beijing: China Railway Press, 1981: 7-9. (in Chinese)
    [29]
    工业与民用建筑工程地质勘察规范(试行): TJ21-77[S]. 1978.

    Code for Investigation of Civil Engineering Geological and Industrial (Trail): TJ21-77[S]. 1978. (in Chinese)
    [30]
    《工程地质手册》编委会. 工程地质手册[M]. 4版.北京: 中国建筑工业出版社, 2006.

    《Geological Engineering Handbook》. Geological Engineering Handbook[M]. 4th ed. Beijing: China Architecture & Building Press, 2006. (in Chinese)
    [31]
    MEYERHOF G G. Penetration tests and bearing capacity of cohesionless soils[J]. Journal of the Soil Mechanics and Foundations Division, ASCE, 1956, 82(SM1): 1-19.
    [32]
    ESLAAMIZAAD S, ROBERTSON P K. Cone penetration test to evaluate bearing capacity of foundations insands[C]//Proceedings of 49th Canadian Geotechnical Conference, 1996, NF: St: 429-438.
    [33]
    李君韬. 基于旁压试验和静力触探估算地基承载力和压缩模量[D]. 北京: 中国地质大学, 2016.

    LI Jun-tao. Estimate Bearing Capacity and Compression Modulus of Soils by Pressuremeter Test and Cone Penetration Test[D]. Beijing: China University of Geosciences, 2016. (in Chinese)
  • Related Articles

    [1]YANG Guanghua. Determination of bearing capacity of foundation by pressure plate load tests[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(7): 1540-1542. DOI: 10.11779/CJGE20220475
    [2]JIANG Mingjing, SHI Anning, XI Banglu, HUANG Wei, LÜ Lei. Study and construction of landing test site for Mars rover[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(4): 826-832. DOI: 10.11779/CJGE20211526
    [3]WANG Xing, KONG Liang, LI Xue-feng. Three-dimensional non-coaxial constitutive model for sand and its application in bearing capacity of foundation[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(5): 892-899. DOI: 10.11779/CJGE202005011
    [4]TONG Li-yuan, LI Hong-jiang, LIU Song-yu, YANG Tao. Prediction of lateral capacity losses of a single pile adjacent to excavation of foundation pits based on CPT tests[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(3): 501-508. DOI: 10.11779/CJGE201903012
    [5]MA Qing-hong, ZHU Da-yong, LEI Xian-shun, WU Ying-lei. Model tests on bearing capacity of footing on sand slopes[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(7): 1271-1280. DOI: 10.11779/CJGE201407011
    [6]YANG Guang-hua, JIANG Yan, ZHANG Yu-cheng, WANG En-qi. New method for determination of bearing capacity of soil foundation[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(4): 597-603. DOI: 10.11779/CJGE201404001
    [7]JIANG Ming-jing, WANG Xin-xin. Investigation of TJ-1 lunar soil simulant cone penetration tests by calibration chamber under different penetration angles[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1442-1450.
    [8]YU Feng, YANG Jun. Design methods for bearing capacity of steel pipe piles driven in sand by means of cone penetration tests[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(sup2): 349-354.
    [9]YANG Junjie, LIU Fei, TOYOSAWA Y, HORIYI N, ITOH K. Particle size effects on bearing capacity of sandy ground in centrifugal tests[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(4): 477-483.
    [10]HUANG Xianzhi, BAI Xiaohong. Practical calculation of bearing capacity on geobelt reinforced cushion[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(7): 804-807.
  • Cited by

    Periodical cited type(3)

    1. 王蓉,翟新乐,吕玺琳. 低渗透性污染场地高压旋喷修复药剂迁移特性数值模拟分析. 地基处理. 2024(06): 580-588 .
    2. 吴霞,桑康云,刘泽宇. 有机污染场地原位化学氧化高压旋喷修复试验. 环境工程. 2023(07): 124-130 .
    3. 柳迪,宋权威,李玲,胡杰,王颋军,杜显元,邓永锋,柯瀚. ERT法监测高压旋喷修复PAHs污染现场试验研究. 中国环境科学. 2023(11): 5933-5943 .

    Other cited types(1)

Catalog

    Article views (382) PDF downloads (194) Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return