• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LIU Song-yu, DU Guang-yin, MAO Zhong-liang, GAO Chang-hui, ZENG Biao, YANG Yong, ZHANG Ding-wen. Field tests on improvement of collapsible loess by vibratory probe compaction method[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(8): 1377-1383. DOI: 10.11779/CJGE202008001
Citation: LIU Song-yu, DU Guang-yin, MAO Zhong-liang, GAO Chang-hui, ZENG Biao, YANG Yong, ZHANG Ding-wen. Field tests on improvement of collapsible loess by vibratory probe compaction method[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(8): 1377-1383. DOI: 10.11779/CJGE202008001

Field tests on improvement of collapsible loess by vibratory probe compaction method

More Information
  • Received Date: October 14, 2019
  • Available Online: December 05, 2022
  • The improvement of collapsible loess is one of the technical problems in the development and construction of western China. The collapsible loess covers a large area, and there are many ground treatment projects under construction. The vibratory probe compaction method is first proposed to treat collapsible loess. During the project of Zhongwei-Lanzhou high speed railway, the technology of pneumatic vibratory probe compaction method to treat collapsible loess is proposed by using the self-developed vibratory probe compaction equipment, and the treatment effect is evaluated. The results of the in-situ and laboratory tests show that the collapsibility of subsoil is eliminated after treatment, with an average collapsibility coefficient of 0.003. The cone resistance, sleeve friction and SPT blow counts in the treated soil are significantly higher than those before treatment. Moreover, the surface wave velocity of subsoil increases by 15% and its physical and mechanical properties are also significantly improved. The vibratory probe compaction method is effective for the treatment of collapsible loess. The new construction technique is energy-efficient, environment-friendly, fast in construction and low-cost, and it can be applied in loess areas.
  • [1]
    雷祥义. 中国黄土的孔隙类型与湿陷性[J]. 中国科学:B辑, 1987, 17(12): 1309-1316. https://www.cnki.com.cn/Article/CJFDTOTAL-JBXK198712008.htm

    LEI Xiang-yi. The pore types and collapsibility of loess in China[J]. China Science: B, 1987, 17(12): 1309-1316. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JBXK198712008.htm
    [2]
    王兰民, 袁中夏, 汪国烈. 饱和黄土场地液化的工程初判和详判指标与方法研究[J]. 地震工程学报, 2013, 35(1): 1-8. doi: 10.3969/j.issn.1000-0844.2013.01.0001

    WANG Lan-min, YUAN Zhong-xia, WANG Guo-lie. Study on method for preliminary and detailed evaluation on liquefaction of loess sites[J]. China Earthquake Engineering Journal, 2013, 35(1): 1-8. (in Chinese) doi: 10.3969/j.issn.1000-0844.2013.01.0001
    [3]
    李娜, 孙军杰, 王谦, 等. 黄土地基改性处理技术研究进展评述与展望[J]. 地球科学进展, 2017, 32(2): 209-219. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201702011.htm

    LI Na, SUN Jun-jie, WANG Qian, et al. Progress review and perspective problems on loess foundation reinforcement by means of modification treatment[J]. Advances in Earth Science, 2017, 32(2): 209-219. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201702011.htm
    [4]
    屈耀辉, 苗学云. 3种常用地基处理方法在黄土区高铁地基中的适用性研究[J]. 中国铁道科学, 2015, 36(4): 8-12. doi: 10.3969/j.issn.1001-4632.2015.04.02

    QU Yao-hui, MIAO Xue-yun. Applicability of three common ground treatment methods for high speed railway subgrade in loess areas[J]. China Railway Science, 2015, 36(4): 8-12. (in Chinese) doi: 10.3969/j.issn.1001-4632.2015.04.02
    [5]
    张志强. 湿陷性黄土的地基处理方法探讨[J]. 武汉大学学报(自然科学版), 2012, 45(A1): 186-188. https://www.cnki.com.cn/Article/CJFDTOTAL-NMSH200902018.htm

    ZHANG Zhi-qiang. Discussion on foundation treatment methods of collapsible loess[J]. Engineering Journal of Wuhan University, 2012, 45(A1): 186-188. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NMSH200902018.htm
    [6]
    王银梅. 湿陷性黄土地基处理新途径的探讨[J]. 中国地质灾害与防治学报, 2008, 19(4): 106-109. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH200804022.htm

    WANG Yin-mei. A new improved method of foundation treatment for collapsible loess[J]. The Chinese Journal of Geological Hazard and Control, 2008, 19(4): 106-109. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH200804022.htm
    [7]
    MITCHELL J K. In-place treatment of foundation soils[J]. Journal of the Soil Mechanics and Foundations Division, 1970, 96(1): 73-110. doi: 10.1061/JSFEAQ.0001391
    [8]
    MASSARSCH, K R, FELLENIUS, B H. Evaluation of resonance compaction of sand fills based on cone penetration tests[J]. Proceedings of the Institution of Civil Engineers, 2017, 1–10.
    [9]
    刘松玉, 杜广印, 苗永红. 十字形振动翼, 200710020591.9[P]. 2008-12-24.
    [10]
    刘松玉, 杜广印, 邵俐, 等. 共振法加固液化地基的操作方法, 201010119970.5[P]. 2010-7-28.
    [11]
    刘松玉, 程远. 共振法加固公路可液化地基试验[J]. 中国公路学报, 2012, 25(6): 24-29. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201206007.htm

    LIU Song-yu, CHENG Yuan. Resonance compaction method for highway ground improvement at liquefaction site[J]. China Journal of Highway and Transport, 2012, 25(6): 24-29. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201206007.htm
    [12]
    杜广印, 刘松玉, 任蓓蓓, 等. 十字形振动翼共振法在处理可液化地基中的应用[J]. 工程地质学报, 2014, 22(增刊): 466-469. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-GCDZ201410001078.htm

    DU Guang-yin, LIU Song-yu, REN Bei-bei, et al. Application of treatment on liquefied foundation using resonance compaction method[J]. Journal of Engineering Geology, 2014, 22(S0): 466-469. (in Chinese) https://cpfd.cnki.com.cn/Article/CPFDTOTAL-GCDZ201410001078.htm
    [13]
    程远, 韩杰, 朱合华, 等. 振杆密实法加固粉土地基效果试验[J]. 中国公路学报, 2019, 32(3): 63-70. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201903008.htm

    CHENG Yuan, HAN Jie, ZHU He-hua, et al. Vibratory probe compaction effect on silty foundation treatment[J]. China Journal of Highway Transport, 2019, 32(3): 63-70. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201903008.htm
    [14]
    DU G Y, GAO C H, LIU S Y, et al. Evaluation method for the liquefaction potential using the standard penetration test value based on the CPTU soil behavior type index[J]. Advances in Civil Engineering, 2019, 1–8.
    [15]
    MOSELEY M P, KIRSCH K. Ground Improvement[M]. 2nd ed. Florida: CRC Press, 2004.
    [16]
    李高. 强夯地基加固质量的实时振动监测方法研究[D]. 北京: 中国地质大学, 2013.

    LI Gao. Methodological Research on the Real Time Vibration Monitoring of Foundation Reinforced Quality by Dynamic Compaction[D]. Beijing: China University of Geosciences, 2013. (in Chinese)
  • Cited by

    Periodical cited type(26)

    1. 张明,胡栋科,张建设,朱会强,贾明钊. 管桩挤土效应消除黄土湿陷效果试验研究. 工程地质学报. 2025(01): 367-376 .
    2. 高常辉,刘松玉,杜广印,庄仲旬,杨泳,何欢. 气动振杆密实法加固湿陷性黄土的模型试验研究. 岩土工程学报. 2024(02): 325-334 . 本站查看
    3. 张星,崔强,王金锁,李俊,刘广,张振华. 灌注桩后注浆对桩周黄土力学特性和湿陷性的影响. 合肥工业大学学报(自然科学版). 2024(02): 240-245 .
    4. 高常辉,刘松玉,杜广印,郁培阳,吴燕开. 基于PFEM法的黄土地基振杆密实过程大变形分析. 东南大学学报(自然科学版). 2024(01): 99-109 .
    5. 王宇虓,杜广印,刘松玉,杨泳,周同和,徐金涛. 振杆密实法加固粗粒混合土模型试验. 工程科学与技术. 2024(03): 99-108 .
    6. 余波江. 湿陷性黄土地区工程地基基础方案优选分析. 安徽建筑. 2024(07): 131-133 .
    7. 王浩,廖霖,侯泽彪,孔繁盛,崔东霞. 矿渣基地聚合物固化黄土路用性能试验研究. 公路交通科技. 2024(10): 103-111+138 .
    8. 化建新,王浩,张丹,梁涛. 地基处理综述及地基处理智能化——第九届全国岩土工程实录交流会特邀报告. 岩土工程技术. 2024(06): 631-643 .
    9. 杜广印,徐金涛,刘松玉,王宇虓,杨泳,刘学军. 振杆密实法处理筛余回填土地基现场试验研究. 东南大学学报(自然科学版). 2024(06): 1504-1510 .
    10. 徐昊天,苟志孝,王正伟,戴梁,章定文. 振杆密实法在高烈度区液化地基处理中的应用研究. 防灾减灾工程学报. 2024(06): 1439-1447 .
    11. 吕清显. 湿陷性黄土地基基础方案比选研究. 河南科技. 2023(01): 96-100 .
    12. 徐硕昌,刘德仁,王旭,安政山,张转军,金芯. 重塑非饱和黄土浸水入渗规律的模型试验研究. 水利水运工程学报. 2023(01): 140-148 .
    13. 胡金山. 水泥土夯扩挤密桩对湿陷性黄土层水平应力的影响. 铁道建筑. 2023(06): 127-131 .
    14. 郑圣榆. 国有建筑企业中层管理者绩效考核体系构建研究. 现代企业文化. 2023(09): 137-140 .
    15. 曹程程,李广林. 黄土物理力学特性的原位测试研究. 江西建材. 2023(06): 170-172 .
    16. 吕擎峰,韩启亮,赵彦旭,郭连星,杲斐. 黄土变刚度组合桩复合地基及其工作性能研究. 地下空间与工程学报. 2023(04): 1289-1298 .
    17. 李敏,李华伟,崔莹. 孔内深层超强夯工法在湿陷性黄土地区高层建筑地基处理中的应用. 科技创新与应用. 2023(28): 55-58 .
    18. 余自业,陈家豪,徐存东,李准,徐慧,王海若,曹骏. 湿陷性黄土地基渠道抗冻胀衬砌结构优化模拟. 中国农村水利水电. 2023(10): 138-144 .
    19. 高常辉,杜广印,刘松玉,庄仲旬,杨泳,何欢. 深层振动密实对湿陷性黄土层水平应力变化的影响. 岩土力学. 2022(02): 519-527 .
    20. 杨晓华,张建伟,张莎莎,晏长根. 黄土地区高速公路地基处理技术研究进展. 长安大学学报(自然科学版). 2022(01): 16-32 .
    21. 陈锐,张星,郝若愚,包卫星. 干湿循环下地聚合物固化黄土强度劣化机制与模型研究. 岩土力学. 2022(05): 1164-1174 .
    22. 安达. 北方深厚湿陷性黄土场地地基处理. 粘接. 2022(05): 154-158 .
    23. 苗永红,卜梓轩,王玲,苏靖凤,殷杰. 扰动对软土累积排水量影响试验研究. 西安理工大学学报. 2022(03): 421-425 .
    24. 张金龙. 煤矸石在道路工程中的应用研究. 工程建设与设计. 2021(07): 76-77 .
    25. 曾彪,章定文,刘松玉,杨泳,张坤,王嘉乐,杜广印. 振杆密实法处理湿陷性黄土施工参数确定现场试验. 岩土工程学报. 2021(S2): 229-232 . 本站查看
    26. 张亚恒,汤宜洋. 振杆密实法在粉土地基加固中的应用研究. 资源信息与工程. 2020(06): 91-94 .

    Other cited types(11)

Catalog

    Article views (378) PDF downloads (258) Cited by(37)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return