• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
GUO Xiao-xia, CHEN Zhi-xiang, SHAO Long-tan, TIAN Xiao-jian. Experimental study on sedimentary behavior and basic physical mechanical properties of fine iron tailings[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(7): 1220-1227. DOI: 10.11779/CJGE202007005
Citation: GUO Xiao-xia, CHEN Zhi-xiang, SHAO Long-tan, TIAN Xiao-jian. Experimental study on sedimentary behavior and basic physical mechanical properties of fine iron tailings[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(7): 1220-1227. DOI: 10.11779/CJGE202007005

Experimental study on sedimentary behavior and basic physical mechanical properties of fine iron tailings

  • The process of deposition and consolidation of fragmented multiphase materials is the basis and prerequisite for studying their strength and deformation. To find out the evolution laws of stress and pore water pressure during the deposition of fine iron tailings and reveal the strength formation mechanism and deformation characteristics of tailings reservoir, the sedimentary slope of tailings, stress, pore water pressure and effective stress during the deposition process are monitored by field large-scale flume tests. Meanwhile, the shear strength of tailings after deposition is determined by the vane shear apparatus. On this basis, grain-size distribution and permeability characteristics of tailings from different sedimentary sections are tested to analyze the evolution mechanism of tailings sedimentation rate. The experimental results show that the accumulation form and permeability characteristics of tailings with extremely uniform particle grinding are different from those of soils. Due to the large proportion of tailings particles and uniform distribution of particles, increasing the permeable boundary of tailings can improve the formation rate of effective stress of tailings better than applying external loads. The surface hardening of tailings and the sealing of micro-pore trigger the formation of effective stress in tailings. It is difficult to infiltrate the stagnant water in the upper layer. Necessary diversion measures should be adopted to reduce the influences of high potential fluid on the stability of dam construction.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return