• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHOU Feng-xi, SHAO Yan-ping, MUSA Abdallah Ibrahim Ahmed. Logistic model for isotropic consolidation curve of soils[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(5): 976-980. DOI: 10.11779/CJGE202005021
Citation: ZHOU Feng-xi, SHAO Yan-ping, MUSA Abdallah Ibrahim Ahmed. Logistic model for isotropic consolidation curve of soils[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(5): 976-980. DOI: 10.11779/CJGE202005021

Logistic model for isotropic consolidation curve of soils

More Information
  • Received Date: June 11, 2019
  • Available Online: December 07, 2022
  • Based on the isotropic compression tests on unsaturated soils and the Logistic function, a model for isotropic consolidation curve of soils is proposed. Firstly, the shortcomings of the single-logarithmic and double-logarithmic linear models commonly used in the volumetric behavior are analyzed. Then, with the Logistic function, the mathematical model between void ratio and pressure under isotropic compression conditions is established. The determination method for every parameter in the model and the analytical expression of the pre-consolidation pressure are given. Finally, the validity of the model is verified by comparison with the existing experimental data, and the influence of suction on each model parameter is analyzed.
  • [1]
    ALONSO E E, GENS A, JOSA A. A constitutive model for partially saturated soils[J]. Géotechnique, 1990, 40(3): 405-430. doi: 10.1680/geot.1990.40.3.405
    [2]
    XIONG Y L, YANG Q L, ZHANG S, et al. Thermo- elastoplastic model for soft rock considering effects of structure and overconsolidation[J]. Rock Mechanics and Rock Engineering, 2018, 51(3): 3771-3784.
    [3]
    STERNIK K. Elasto-plastic constitutive model for overconsolidated clays[J]. International Journal of Civil Engineering, 2017, 15(3): 431-440. doi: 10.1007/s40999-017-0193-8
    [4]
    MASIN D. A hypoplastic constitutive model for clays[J]. International Journal for Numerical and nalytical Methods in Geomechanics, 2005, 29(4): 311-336. doi: 10.1002/nag.416
    [5]
    SHENG D, GENS A, FREDLUND D G, et al. Unsaturated soils: from constitutive modelling to numerical algorithms[J]. Computers and Geotechnics, 2008, 35(6): 810-824. doi: 10.1016/j.compgeo.2008.08.011
    [6]
    WHEELER S J, SIVAKUMAR V. An elasto-plastic critical state framework for unsaturated soil[J]. Géotechnique, 1995, 45(1): 35-53. doi: 10.1680/geot.1995.45.1.35
    [7]
    SUN De'an, SHENG D, SLOAN S W. Elastoplastic modelling of hydraulic and stress–strain behaviour of unsaturated soils[J]. Mechanics of Materials, 2007, 39(3): 212-221. doi: 10.1016/j.mechmat.2006.05.002
    [8]
    张玉伟, 翁效林, 宋战平, 等. 考虑黄土结构性和各向异性的修正剑桥模型[J]. 岩土力学, 2019(3): 1030-1038. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201903023.htm

    ZHANG Yu-wei, WENG Xiao-lin, SONG Zhan-ping, et al. A modified Cambridge model considering structural and anisotropy of loess[J]. Rock and Soil Mechanics, 2019(3): 1030-1038. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201903023.htm
    [9]
    ROUAINIA M, MUIR Wood D. A kinematic hardening constitutive model for natural clays with loss of structure[J]. Géotechnique, 2000, 50(2): 153-164. doi: 10.1680/geot.2000.50.2.153
    [10]
    ROSCOE K, BURLAND J. On the generalized stress–strain behaviour of wet clay[J]. Eng Plast, 1968, 3: 539-609.
    [11]
    HASHIGUCHI K. On the linear relations of V-lnp and ln v-lnp for isotropic consolidation of soils[J]. International Journal for Numerical & Analytical Methods in Geomechanics, 2010, 19(5): 367-376.
    [12]
    SHENG D, YAO Y, CARTER J P. A volume-stress model for sands under isotropic and critical stress states[J]. Canadian Geotechnical Journal, 2015, 45(11): 1639-1645.
    [13]
    刘艳, 赵成刚, 韦昌富. 非饱和土的修正SFG模型研究[J]. 岩土工程学报, 2012, 34(8): 1458-1463. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201208017.htm

    LIU Yan, ZHAO Cheng-gang, WEI Chang-fu. Research on modified SFG model of unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(8): 1458-1463. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201208017.htm
    [14]
    方耀宁, 郭云飞, 兰巨龙. 基于Logistic函数的贝叶斯概率矩阵分解算法[J]. 电子与信息学报, 2014, 36(3): 715-720. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201403033.htm

    FANG Yao-ning, GUO Yun-fei, LAN Ju-long. A bayesian probabilistic matrix factorization algorithm[J]. Based on Logistic Function Journal of Electronics & Information Technology, 2014, 36(3): 715-720. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201403033.htm
    [15]
    SOLTANI A, AZIMI M, DENG A, et al. A simplified method for determination of the soil–water characteristic curve variables[J]. International Journal of Geotechnical Engineering, 2017: 1-10.
    [16]
    SHARMA, SHYAM R. Mechanical Behaviour of Unsaturated Highly Expansive Clays[D]. Oxford: University of Oxford, 1998.
    [17]
    BELLIA Z, GHEMBAZA M S, BELAL T. A thermo-hydro-mechanical model of unsaturated soils based on bounding surface plasticity[J]. Computers and Geotechnics, 2015, 69: 58-69. doi: 10.1016/j.compgeo.2015.04.020
    [18]
    BURLAND J B, CUNNINGHAM M R, DINEEN K, et al. The mechanical behaviour of a reconstituted unsaturated silty clay[J]. Géotechnique, 2003, 53(2): 183-194.
  • Cited by

    Periodical cited type(30)

    1. 王卫东,高文生,龚维明,林毅峰,刘永超,吴江斌. 基础工程技术的发展与创新. 土木工程学报. 2025(02): 97-117 .
    2. 李雨润,刘毅,梁旭华. 液化场地-群桩-上部结构动力特性研究综述. 河北工业大学学报. 2024(01): 74-80 .
    3. 李雨润,范浩然,闫志晓,辛晓梅. 干砂与饱和砂土场地直斜群桩横向动力响应特性对比研究. 自然灾害学报. 2024(03): 202-216 .
    4. 胡月,叶小雷,张戍,赵鸿达,刘浩. 水平-纵向双地震动作用下桥梁桩基地震响应研究. 市政技术. 2024(07): 167-174 .
    5. 杨松松,章定文,曾彪,张爱军,成朝恒,何凌. 水泥土加固桩水平循环承载性能足尺试验研究. 岩土工程学报. 2024(07): 1453-1461 . 本站查看
    6. 张聪,冯忠居,林路宇,周桂梅,陈露. 震陷场地变截面单桩动力特性与损伤评价. 岩土力学. 2024(10): 3037-3046+3057 .
    7. 许晓帅,贾科敏,许成顺,杜修力. 基于易损性分析的可液化场地单桩基础抗震性能研究. 防灾减灾工程学报. 2024(05): 1094-1105 .
    8. 张爱军,唐显云,李飞,侯爵,杨松松,成朝恒,何凌,章定文. 液化场地单桩振动台响应试验研究. 公路交通技术. 2024(05): 104-110 .
    9. 郝宇杰,郭竟语,王玉珏,梁春明,马建林. 地震荷载作用下深厚饱和砂土中桩动力特性试验研究. 路基工程. 2023(01): 99-106 .
    10. 贾科敏,许成顺,杜修力,张小玲,宋佳,苏卓林. 可液化倾斜场地的侧向扩展机制分析. 岩土力学. 2023(06): 1837-1848 .
    11. 贾科敏,许成顺,杜修力,张小玲,崔春义. 液化侧向扩展场地-群桩基础-结构体系地震破坏反应大型振动台试验方案设计. 工程力学. 2023(07): 121-136 .
    12. 冯忠居,李玉婷,赵瑞欣,蔡杰,董建松,孟莹莹. 可液化场地变截面群桩基础动力响应研究. 科学技术与工程. 2023(18): 7886-7894 .
    13. 于旭,赵畅,庄海洋,陈国兴. 可液化地基上桩基基础小高宽比隔震结构体系振动特性试验研究. 振动工程学报. 2023(04): 1125-1135 .
    14. 高峰. 陡坡场地桩基础地震响应及其影响因素分析. 江西建材. 2023(08): 190-192 .
    15. 曹小林,周凤玺,戴国亮,龚维明. 激振荷载作用下桩基础动力响应的现场试验分析. 岩土工程学报. 2023(S1): 171-175 . 本站查看
    16. 吴九江,胡浩东,李艳. 可液化场地桥梁桩基震害及抗液化研究进展. 工业建筑. 2023(10): 169-178+118 .
    17. 许成顺,豆鹏飞,杜修力,陈苏,李霞. 非液化土-群桩基础-结构体系相互作用动力响应振动台试验研究. 建筑结构学报. 2022(05): 185-194+204 .
    18. 冯忠居,孟莹莹,张聪,赖德金,朱继新,林路宇. 强震作用下液化场地群桩动力响应及p-y曲线. 岩土力学. 2022(05): 1289-1298 .
    19. 庄海洋,赵畅,于旭,陈国兴. 液化地基上隔震结构群桩与土动力相互作用振动台模型试验研究. 岩土工程学报. 2022(06): 979-987 . 本站查看
    20. 包小华,喻益亮,陈湘生,刘志鹏,崔宏志. 可液化地层-隧道-桩-地上结构地震相互作用响应研究. 建筑结构学报. 2022(S1): 275-286 .
    21. 张征,唐亮,凌贤长,司盼,田爽,丛晟亦. 砂土液化过程中桩—土动力相互作用p-y曲线特性. 哈尔滨工程大学学报. 2022(10): 1433-1439 .
    22. 兰景岩,宋锡俊,王婷. 上覆海水层对自由场基本周期影响的离心模型试验研究. 岩土工程学报. 2021(04): 768-775 . 本站查看
    23. 冯忠居,孟莹莹,董芸秀,关云辉,尹继兴,刘闯. 强震作用下液化场地桩-土非线性动力相互作用特性. 科学技术与工程. 2021(17): 7299-7307 .
    24. 张健,李雨润,戎贤,师庆晓,贺书云. 液化土中斜群桩承台动力响应特性及桩身弯矩分布规律研究. 地震工程与工程振动. 2021(03): 235-244 .
    25. 冯忠居,张聪,何静斌,刘闯,董芸秀,袁枫斌. 强震作用下群桩基础抗液化性能的振动台试验. 交通运输工程学报. 2021(04): 72-83 .
    26. 许成顺,贾科敏,杜修力,王志华,宋佳,张小玲. 液化侧向扩展场地-桩基础抗震研究综述. 防灾减灾工程学报. 2021(04): 768-791 .
    27. 邢爽,吴桐,李曰兵,潘鑫洲. 冻土–结构相互作用体系振动台试验及数值分析. 岩土工程学报. 2021(11): 2003-2012 . 本站查看
    28. 何静斌,冯忠居,董芸秀,胡海波,刘闯,郭穗柱,张聪,武敏,王振. 强震区桩-土-断层耦合作用下桩基动力响应. 岩土力学. 2020(07): 2389-2400 .
    29. 李梓祥,罗深平,张韬,余燚. 高速公路桥隧搭结构振动台试验研究. 广州航海学院学报. 2020(03): 61-64+82 .
    30. 许成顺,戴金,豆鹏飞,宋佳,孙毅龙,贾科敏. 液化场地-群桩-上部结构动力相互作用简化分析方法. 地震工程与工程振动. 2020(06): 25-35 .

    Other cited types(22)

Catalog

    Article views (318) PDF downloads (148) Cited by(52)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return