• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
CUI Guang-yao, WANG Xue-lai, WANG Ming-sheng. Field tests on large deformation control measures of surrounding rock of deep tunnels in fault zones with high geostress[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(7): 1354-1360. DOI: 10.11779/CJGE201907021
Citation: CUI Guang-yao, WANG Xue-lai, WANG Ming-sheng. Field tests on large deformation control measures of surrounding rock of deep tunnels in fault zones with high geostress[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(7): 1354-1360. DOI: 10.11779/CJGE201907021

Field tests on large deformation control measures of surrounding rock of deep tunnels in fault zones with high geostress

More Information
  • Received Date: September 08, 2018
  • Published Date: July 24, 2019
  • The surrounding rock at the western piedmont of Yulong Snow Mountain fault zone of Zhongyi pilot tunnel at the tunnel exit of the Lijiang-Xianggelila railway is weak and fractured affected by the high geostress and fault zone, and the large deformation of the side wall is prominent. Four kinds of large deformation control measures for the surrounding rock are taken out in the field tests. The results show that the deformation of the surrounding rock is out of control adopting the general strengthening support measures (working condition 1). It needs slow release adopting control measures of resisting and reducing the stress of the surrounding rock. The stress of the surrounding rock of the test section is better controlled by working condition 3 (double-layer support + lower bench and inverted arch excavation), but the process is tedious and the construction progress is slow. Adopting the "strong support" measure of working condition 4 (monolayer support + strengthening arch support + reserved emergency reinforcement measures), the maximum daily rate of deformation and the maximum accumulation of deformation are the minimum, 3.2 cm/d and 62.2 cm respectively, the accumulation of deformation of the full test section is within the controllable range, the construction procedure is relatively simple, and the advance progress of the construction month can reach more than 90 m. In view of the advance effect of the pilot, It's highly recommended that the western piedmont of Yulong Snow Mountain fault zone of Zhongyi tunnel exit should adopt the working condition 4. The research results can provide a reference for large deformation control measures for the surrounding rock of deep tunnels in fault zones with high geostress.
  • [1]
    ORESTEPP, PEILAD.Modelling progressive hardening of shotcretein convergence-confinement approach to tunnel design[J]. Tunnelling and Underground Space Technology, 1997, 12(3): 425-431.
    [2]
    王梦恕. 中国隧道及地下工程修建技术[M]. 北京: 人民交通出版社, 2010.
    (WANG Meng-shu.Tunnelling and underground engineering technology in China[M]. Beijing: China Communications Press, 2010. (in Chinese))
    [3]
    何满潮, 景海河, 孙晓明. 软岩工程力学[M]. 北京: 科学出版社, 2002.
    (HE Man-chao, JING Hai-he, SUN Xiao-ming.Engineering mechanics of soft rock[M]. Beijing: Science Press, 2002. (in Chinese))
    [4]
    关宝树, 赵勇. 软弱围岩隧道施工技术[M]. 北京: 人民交通出版社, 2011.
    (GUAN Bao-shu, ZHAO Yong.Construction technology of tunnel in soft surrounding rock[M]. Beijing: China Communications Press, 2011. (in Chinese))
    [5]
    赵勇. 隧道软弱围岩变形机制与控制技术研究究[D]. 北京: 北京交通大学, 2012.
    (ZHAO Yong.Study on deformation mechanism and control technology of weak rock surrounding tunnel[D]. Beijing: Beijing Jiaotong University, 2012.(in Chinese))
    [6]
    近藤敏达. NATM调查.计测と施工管理の问题点[J].施工技术, 1977(11): 76-80.
    (KONDO T.The management problem of measurement and control in tunnel construction with the NATM[J]. Construction Technology, 1977(11): 76-80. (in Japanese)
    [7]
    KIMURA F, OKABAYASHI N, KAWAMOTO T.Tunneling through squeezing rock in two large fault zones of the Enasan tunnel II[J]. Rock Mechanics and Rock Engineering, 1987, 20(3): 151-166.
    [8]
    张祉道. 家竹箐隧道施工中支护大变形的整治[J]. 世界隧道, 1997(1): 7-16.
    (ZHANG Zhi-dao.Regulation of support large deformation for Jiazhuqing tunnel in construction[J]. Modern Tunneling Technology, 1997(1): 7-16. (in Chinese))
    [9]
    刘高, 张帆宇, 李新召, 等. 木寨岭隧道大变形特征及机理分析[J]. 岩石力学与工程学报, 2005, 24(增刊2): 5521-5526.
    (LIU Gao, ZHANG Fan-yu, LI Xin-zhao, et al.Reseach on large deformation and its mechanism of muzhailing tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(S2): 5521-5526. (in Chinese))
    [10]
    李国良, 朱永全. 乌鞘岭隧道高地应力软弱围岩大变形控制技术[J]. 铁道工程学报, 2008(3): 54-59.
    (LI Guo-liang, ZHU Yong-quan.Control technology for large deformation of high land stressed weak rock in wushaoling tunnel[J].Journal of Railway Engineering Society, 2008(3): 54-59. (in Chinese))
    [11]
    邹育麟, 何川, 周艺, 等. 强震区软弱破碎千枚岩隧道系统锚杆支护作用效果分析[J]. 岩土力学, 2013, 34(7): 2001-2008.
    (ZOU Yu-lin, HE Chuan, ZHOU Yi, et al.Analysis of supporting effect of systematic bolts applied to weak and broken phyllite tunnels in meizoseismal area[J]. Rock and Soil Mechanics, 2013, 34(7): 2001-2008. (in Chinese))
    [12]
    万飞, 谭忠盛, 马栋. 关角隧道F2-1断层破碎带支护结构优化设计[J]. 岩石力学与工程学报, 2014, 33(3): 531-538.
    (WAN Fei,TAN Zhong-sheng,MA Dong.Optimizing design of support structure for Guanjiao tunnel in fault-rupture zone F2-1[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(3): 531-538. (in Chinese))
    [13]
    张德华, 刘士海, 任少强. 高地应力软岩隧道中型钢与格栅支护适应性现场对比试验研究[J]. 岩石力学与工程学报, 2014, 33(11): 2258-2266.
    (ZHANG De-hua, LIU Shi-hai, RENG Shao-qiang.Research on selection of steel and steel grid for tunnel support in soft rock with high geostress[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(11): 2258-2266. (in Chinese))
    [14]
    丁远振, 谭忠盛, 马栋. 高地应力断层带软岩隧道变形特征与控制措施研究[J]. 土木工程学报, 2017, 50(增刊1): 129-134.
    (DING Yuan-zhen, TAN Zhong-sheng, MA Dong.Study on large deformation characteristics and control measures of soft rock tunnel in fault zone with high geostress[J]. China Civil Engineering Journal, 2017, 50(S1): 129-134. (in Chinese))
    [15]
    李术才, 徐飞, 李利平, 等. 隧道工程大变形研究现状、问题与对策及新型支护体系应用介绍[J]. 岩石力学与工程学报, 2016, 35(7): 1366-1376.
    (LI Shu-cai, XU Fei, LI Li-ping, et al.State of the art:challenge and methods on large deformation in tunnel engineering and introduction of a new type supporting system[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(7): 1366-1376. (in Chinese))
  • Related Articles

    [1]HAN Xingbo, CHEN Ziming, YE Fei, LIANG Xiaoming, FENG Haolan, XIA Tianhan. Model tests on disturbance characteristics of surrounding rock of loess shield tunnels during excavation[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(5): 968-977. DOI: 10.11779/CJGE20230054
    [2]HOU Gongyu, SHAO Yaohua, LIU Chunlei, WANG Yizhe, CHEN Qinhuang, HU Zhiyu, ZHAO Qingru. Unloading deformations of surrounding rock in jointed roadways[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(3): 616-623. DOI: 10.11779/CJGE20230028
    [3]XU Guangming, WANG Nianxiang, GU Xingwen, REN Guofeng, ZHOU Chun'er, WU Jiawu. Preliminary study on influences of model container constraint on large-deformation failure behaviors by centrifuge modeling[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(2): 232-242. DOI: 10.11779/CJGE20220442
    [4]SUN Zhen-yu, ZHANG Ding-li, HOU Yan-juan, LI Ao. Whole-process deformation laws and determination of stability criterion of surrounding rock of tunnels based on statistics of field measured data[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(7): 1261-1270. DOI: 10.11779/CJGE202107011
    [5]WANG Yan-di, REN Yu-xiao, ZHUANG Dao-kun, GAO Xin, CHAI Wei-sen, YAN Shu-wang. Study on anchor dropping in seabed based on model tests and large deformation finite element method[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S2): 202-207. DOI: 10.11779/CJGE2020S2036
    [6]WANG Dao-yuan, LIU Jia, ZHANG Chuo, YUAN Jin-xiu, ZHU Yong-quan, LIU Hui, CUI Guang-yao. Field tests on large deformation control method for surrounding rock of deep tunnel in fault zone with high geostress[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(4): 658-666. DOI: 10.11779/CJGE202004008
    [7]GUO Fuli, ZHANG Dingli, SU Jie, NIU Xiaokai. Change of strength of surrounding rock system induced by weak interlayer[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(5): 720-726.
    [8]GARTUNG Erwin, HENKEN MELLIES Ulrich, RAMKE Hans Gunter, HU Yifeng. Field tests on landfill covers for evaluation of performance of mineral cover systems[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(3): 403-409.
    [9]HUANG Xuefeng, CHEN Zhenghan, HA Shuang, XUE Saiguang, SUN Shuxun, XU Yiming, JIN Xueju, ZHU Yuanqing. Large area field immersion tests on characteristics of deformation of self weight collapse loess under overburden pressure[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(3): 382-389.
    [10]WU Ming, ZHAO Minghua. Study on pile-soil interaction under large deflection and its model test[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(4): 436-440.
  • Cited by

    Periodical cited type(26)

    1. 李达强,杨朝帅. 高地应力软岩隧道衬砌开窗应力释放技术研究. 科学技术创新. 2025(01): 136-140 .
    2. 印永进. 隧道穿越复杂多变软岩大变形控制技术研究. 工程机械与维修. 2024(01): 59-63 .
    3. 马建华,尤著刚,王化武,雷飞,胡雯杰,胡自强,杨刚铭,郝艳妲. 高地应力软岩隧道超前平行导洞开挖对主洞影响:以玉龙雪山隧道工程为例. 科学技术与工程. 2024(10): 4265-4275 .
    4. 邵珠山,陈鑫源,洪思源,孙振宇,吴奎. 内置让压元件衬砌支护刚度计算方法研究. 铁道标准设计. 2023(01): 41-47 .
    5. 孟陆波,李攀,李天斌,宋涛,陈渤,张文居,王伟成,汪俊波. 隧道可缩工字钢拱架让压规律模型试验研究. 铁道标准设计. 2023(01): 48-54+61 .
    6. 邹小新. 高地应力隧道支护参数优化设计研究. 工程建设与设计. 2023(01): 167-170 .
    7. 邱居涛,申玉生,赵何霖,朱正超,喻炳鑫,董俊,苟安迪. 城市深埋黏土隧道变形破坏机制试验研究. 岩石力学与工程学报. 2023(11): 2765-2775 .
    8. 刘红伟,阮国见,王众乐. 预应力树脂锚杆适配工装工艺探究——以丽香铁路中义隧道为例. 四川建筑. 2022(03): 254-256 .
    9. 崔光耀,魏杭杭,王明胜. 高地应力强风化炭质板岩隧道大变形控制现场试验研究. 现代隧道技术. 2022(03): 183-189+200 .
    10. 杨才雄. 隧道浅埋偏压软弱围岩施工技术研究. 石材. 2022(12): 66-68 .
    11. 杨鑫,王建军,周波,李思涛,谭忠盛. 中老铁路沙嫩山隧道施工变形特征及控制技术. 人民长江. 2022(S2): 109-112 .
    12. 方春聪. 公路隧道的施工要点. 石材. 2022(12): 63-65 .
    13. 李雯静,任旭华,张继勋,魏鹏. 板岩区地下厂房洞室群围岩稳定性研究. 水力发电. 2022(11): 74-79 .
    14. 凌涛,刘云龙,彭学军,肖磊. 复杂城市环境地铁暗挖通道施工地表沉降控制技术. 工程建设. 2021(03): 49-54 .
    15. 彭学军,李一萍,陈彬,刘飞翔,方星桦. 藏噶隧道蚀变花岗岩地层围岩大变形控制措施研究. 施工技术. 2021(11): 92-95+128 .
    16. 周航,陈仕阔,刘彤,李涵睿. 挤压性围岩大变形危险性评价的组合赋权-理想点模型. 中南大学学报(自然科学版). 2021(10): 3647-3658 .
    17. 王志杰,蔡李斌,邱志洪,芮小豪,马兆飞,程宏生,张曾照,徐海岩. 土砂互层隧道大变形控制技术研究——以浩吉铁路阳城隧道为例. 隧道建设(中英文). 2021(S2): 469-478 .
    18. 李守刚. 高地应力破碎围岩隧道变形受力特征试验研究. 科学技术与工程. 2020(04): 1574-1580 .
    19. 郭尚坤. 阳山隧道高地应力近水平岩层变形控制关键技术研究. 铁道建筑技术. 2020(03): 91-95 .
    20. 李唱唱,侍克斌,姜海波. 深埋高地应力引水隧洞节理围岩稳定性研究. 水资源与水工程学报. 2020(02): 219-224 .
    21. 张广泽,冯君,易勇进,柴春阳,强新刚,王振友. 隧道大变形机理及分类分级探讨. 铁道标准设计. 2020(10): 77-82 .
    22. 吴奎,邵珠山,秦溯. 挤压隧道中围岩与内置高压缩性元件衬砌相互作用机制研究. 工程力学. 2020(11): 185-194 .
    23. 杨凯,孙润方,晏启祥,万斐,李黎. 软弱炭质页岩隧道大变形监测及其控制技术. 四川建筑. 2020(06): 170-173+176 .
    24. 周瑞虎. 双线三台阶深埋隧道力学行为特征研究. 黑龙江交通科技. 2019(10): 129-130 .
    25. 谢也真,曹平,陈昊然. 滥泥坪铜矿三维地应力测量及巷道布置优化研究. 黄金科学技术. 2019(06): 862-870 .
    26. 贺双平,冯云旺,李金平,孙建伟,郭泽民. 浅析工作面切眼破碎带漏顶治理技术. 能源技术与管理. 2019(06): 70-72 .

    Other cited types(15)

Catalog

    Article views (247) PDF downloads (187) Cited by(41)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return