• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LIN Cun-gang, HUANG Mao-song. Deflections of discontinuous buried pipelines induced by shield tunnelling based on Pasternak foundation[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(7): 1200-1207. DOI: 10.11779/CJGE201907003
Citation: LIN Cun-gang, HUANG Mao-song. Deflections of discontinuous buried pipelines induced by shield tunnelling based on Pasternak foundation[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(7): 1200-1207. DOI: 10.11779/CJGE201907003

Deflections of discontinuous buried pipelines induced by shield tunnelling based on Pasternak foundation

More Information
  • Received Date: August 27, 2018
  • Published Date: July 24, 2019
  • An accurate prediction of deflections of the buried pipelines induced by shield tunnelling is essential to their damage evaluation and control. By introducing the Pasternak foundation model, the finite difference method is used to deduce a solution to the deflections of jointed pipelines subject to shield tunnelling-induced ground loss. The applicability of this solution and its advantage in computational efficiency are verified by the results of a centrifuge model test and the elastic-continuum solution. Furthermore, a proposal is made for determination of the value of the subgrade shear stiffness. Afterwards, the parametric studies show that the deflection of the pipeline is significantly influenced by the stiffness of the joints. With the increase of their stiffness, the maximum deflection of the pipeline decreases, and the deflection of a jointed pipeline approaches to that of a continuous one. In addition, the deflection of the pipeline is affected by the amount and distribution of the joints to some extent. However, this effect decreases with an increase of the number of the joints.
  • [1]
    ATTEWELL P B, YEATES J, SELBY A R.Soil movements induced by tunnelling and their effects on pipelines and structures[M]. New York: Chapman and Hall, 1986.
    [2]
    VESIC A B.Bending of beams resting on isotropic elastic solid[J]. Journal of the Engineering Mechanics Division, 1961, 87(2):35-54.
    [3]
    KLAR A, VORSTER T, SOGA K, et al.Soil-pipe interaction due to tunnelling: comparison between Winkler and elastic continuum solutions[J]. Géotechnique, 2005, 55(6): 461-466.
    [4]
    KLAR A, MARSHALL A M.Shell versus beam representation of pipes in the evaluation of tunneling effects on pipelines[J]. Tunnelling and Underground Space Technology, 2008, 23(4): 431-437.
    [5]
    KLAR A, MARSHALL A M.Linear elastic tunnel pipeline interaction: the existence and consequence of volume loss equality[J]. Géotechnique, 2015, 65(9): 788-792.
    [6]
    VORSTER T E B, KLAR A, SOGA K, et al. Estimating the effects of tunneling on existing pipelines[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(11): 1399-1410.
    [7]
    MARSHALL A M, KLAR A, MAIR R.Tunneling beneath buried pipes: view of soil strain and its effect on pipeline behavior[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(12):1664-1672.
    [8]
    KLAR A, ELKAYAM I, MARSHALL A M.Design oriented linear-equivalent approach for evaluating the effect of tunneling on pipelines[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 142(1): 04015062.
    [9]
    王正兴, 缪林昌, 王冉冉, 等. 砂土中隧道施工对相邻垂直连续管线位移影响的模型试验研究[J]. 岩土力学, 2013, 34(增刊2):143-149.
    (WANG Zheng-xing, MIAO Lin-chang, WANG Ran-ran, et al.Model test study of vertical buried continuous pipelines displacements affected by tunnelling in sand[J]. Rock and Soil Mechanics, 2013, 34(S2): 143-149. (in Chinese))
    [10]
    SHI J W, WANG Y, NG C W W. Three-dimensional centrifuge modeling of ground and pipeline response to tunnel excavation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 142(11): 04016054.
    [11]
    WANG Y, MOORE I D.Simplified design equations for joints in buried flexible pipes based on Hetényi Solutions[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(3): 04013020.
    [12]
    KLAR A, MARSHALL A M, SOGA K, et al.Tunneling effects on jointed pipelines[J]. Canadian Geotechnical Journal, 2008, 45(1): 131-139.
    [13]
    ZHANG C R, YU J, HUANG M S.Effects of tunnelling on existing pipelines in layered soils[J]. Computers and Geotechnics, 2012, 43: 12-25.
    [14]
    张陈蓉, 俞剑, 黄茂松. 隧道开挖对邻近非连续接口地埋管线的影响分析[J]. 岩土工程学报, 2013, 35(6): 1018-1026.
    (ZHANG Chen-rong, YU Jian, HUANG Mao-song.Responses of adjacent underground jointed pipelines induced by tunneling[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(6): 1018-1026. (in Chinese))
    [15]
    SHI J, WANG Y, NG C W.Numerical parametric study of tunneling-induced joint rotation angle in jointed pipelines[J]. Canadian Geotechnical Journal, 2016, 53(12): 2058-2071.
    [16]
    PASTERNAK P L. On a new method of analysis of an elastic foundation by means of two foundation constants[J]. Gosudarstvennoe Izdatelstvo Literaturi po Stroitelstvu i Arkhitekture, 1954, Moscow, USSR. (in Russian)
    [17]
    孙训方, 方孝淑, 关来泰. 材料力学(I)[M]. 北京: 中国铁道出版社, 2002: 156-160.
    (SUN Xun-fang, FANG Xiao-shu, GUAN Lai-tai.Mechanics of meterial (I) [M]. Beijing: China Science Publishing House, 2002: 156-160. (in Chinese))
    [18]
    PECK R B.Deep excavations and tunneling in soft ground[C]// Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering. Mexico City, 1969: 225-290.
    [19]
    王磊, 李家宝. 结构分析的有限差分法[M]. 北京:人民交通出版社,1982: 4-11.
    (WANG Lei, LI Jia-bao.Finite difference method in structural analysis[M]. Beijing: China Communications Press, 1982: 4-11. (in Chinese))
    [20]
    SELVADURAI A P S, GLADWELL G M L. Elastic analysis of soil-foundation interaction[M]. New York: Elsevier Scientific Publishing Company, 1979: 14-27.
    [21]
    YU J, ZHANG C R, HUANG M S.Soil-pipe interaction due to tunnelling: assessment of Winkler modulus for underground pipelines[J]. Computers and Geotechnics, 2013, 50(5): 17-28.
    [22]
    VORSTER T E B. Effects of tunnelling on buried pipes[D]. London: University of Cambridge, 2006.
    [23]
    徐凌. 软土盾构隧道纵向沉降研究[D]. 上海: 同济大学, 2005.
    (XU Ling.Study on the longitudinal settlement of shield tunnel in soft soil[D]. Shanghai: Tongji University, 2005. (in Chinese))
  • Cited by

    Periodical cited type(35)

    1. 黄明华,钟煜轩,陆锦斌,王克平. 基于非连续地基梁模型的基坑开挖诱发下卧盾构隧道变形分析. 岩土力学. 2025(02): 492-504 .
    2. 叶俊能,王忠瑾,王乾浩,冯国辉. 工程堆载诱发邻近管线变形响应的快速解析方法. 科学技术与工程. 2025(05): 2082-2089 .
    3. 董瑞桥,施展斌. 隧道开挖对上覆既有管线影响的简化解析计算方法. 城市轨道交通研究. 2024(02): 27-30+37 .
    4. 罗文俊,刘天宇,郝结平,江学辉. 基于能量法的隧道穿越引起既有管线变形研究. 防灾减灾工程学报. 2024(01): 128-136 .
    5. 苏永华,李明. 黄土盾构下穿不同地下非连续管线的模型试验. 湖南大学学报(自然科学版). 2024(03): 59-68 .
    6. 林存刚,王忠杰,郭成超,王复明,陈瑜,赵辰洋,丁智. 基于双层Winkler地基的盾构穿越管线挠曲与脱空分析. 岩石力学与工程学报. 2024(05): 1270-1281 .
    7. 冯国辉,肖明清,倪建中,郑茗旺,李雨杰,刘冠水,李强,徐长节. 盾构下穿引起上覆管线变形的简化计算方法. 湖南大学学报(自然科学版). 2024(05): 68-75 .
    8. 尹义豪. 大直径盾构隧道下穿地下管线研究分析及应用. 建筑安全. 2024(08): 33-37 .
    9. 祁军,王忠杰,陈子君,林存刚,谢稳江,梁禹,赵茗洁,赵辰洋. 盾构掘进引起砂土沉降及管道脱空模型试验研究. 隧道建设(中英文). 2024(08): 1567-1575 .
    10. 曹洋,丁笑寒,陶静,李国政,姚凯捷. 考虑侧壁摩擦的埋置结构扰动沉降计算方法研究. 应用基础与工程科学学报. 2024(05): 1463-1473 .
    11. 黄铖. 纵坡曲线盾构隧道近距下穿既有管廊及参数分析. 公路. 2024(09): 443-452 .
    12. 冯国辉,徐长节,郑茗旺,吴琼,黄展军,程康. 新建隧道下穿既有隧道引起的隧-土相互作用研究. 工程力学. 2023(05): 59-68 .
    13. 冯国辉,徐长节,郑茗旺,楼佳悦,侯世磊,葛尚奇,仇雅诗,程康. 考虑剪切变形下盾构隧道引起上覆管线变形分析. 工程科学与技术. 2023(03): 100-109 .
    14. 黄明华,周钲霖. 双参数地基中隧道下穿既有管线的显式解析解分析. 安全与环境学报. 2023(06): 1852-1858 .
    15. 韩守程,郑康龙,王献明,高涛,刘力丹. 基于Kerr地基模型盾构隧道施工对既有管线变形影响的简化算法. 工程建设与设计. 2023(12): 73-75 .
    16. 肖方奇,朱春柏,冯国辉,刘念武. 隧道开挖引起上覆既有隧道受力变形解析解. 科学技术与工程. 2023(18): 7945-7951 .
    17. 付欣,胡文君,王晓峰,黄鹏,李衍昭,程旭东. TBM管道隧道下穿施工对既有管道影响规律研究. 天然气与石油. 2023(03): 20-26 .
    18. 杨明辉,郑彬彬,靳正付,付大喜. 考虑脱空效应的隧道开挖诱发上覆管道变形分析. 地下空间与工程学报. 2023(05): 1433-1443 .
    19. 张治国,方蕾,张成平,Y T Pan,吴钟腾. 降雨诱发滑坡对非连续接口输气管道受力影响分析. 岩土工程学报. 2022(02): 245-254 . 本站查看
    20. 李洪江. 地铁隧道开挖对既有管线变形影响分析. 科学技术创新. 2022(05): 126-130 .
    21. 冯国辉,徐长节,郑茗旺,李欣雨,迟民良,侯世磊. 考虑轴向内力时盾构下穿引起的既有隧道变形响应分析. 东南大学学报(自然科学版). 2022(03): 523-529 .
    22. 苗晨阳,黄强兵,苟玉轩,滕宏泉,贾少春. 地裂缝场地盾构隧道下穿施工对既有管廊的影响研究. 现代隧道技术. 2022(03): 155-165+171 .
    23. 陶连金,王志岗,石城,安韶,贾志波. 基于Pasternak地基模型的断层错动下管线结构纵向响应的解析解. 岩土工程学报. 2022(09): 1577-1586+1 . 本站查看
    24. 邓皇适,傅鹤林,史越,赵运亚,黄齐兵. 盾构隧道曲线段掘进引发邻近地下管线变形分析. 中南大学学报(自然科学版). 2022(08): 3008-3020 .
    25. 杨华. 埋深对盾构引起承插式管廊变形的影响研究. 国防交通工程与技术. 2022(05): 55-58+62 .
    26. 乔晓延,齐晓强. 考虑轴力作用下盾构下穿引起既有隧道变形解析解. 铁道标准设计. 2022(12): 98-103 .
    27. 吕金剑,李忠超,龙华东,梁荣柱,陈峰军,程康. 小净距双线隧道下穿诱发运营盾构隧道纵向变形分析. 科技通报. 2022(11): 94-100 .
    28. 管凌霄,徐长节,可文海,马锡海,徐立明,虞巍巍. 隧道下穿引起既有管道竖向位移的简化计算方法. 土木与环境工程学报(中英文). 2021(05): 66-72 .
    29. 冯国辉,徐长节,郑茗旺,薛齐,杨开放,管凌霄. 侧向土体影响下盾构隧道引起上覆管线变形. 浙江大学学报(工学版). 2021(08): 1453-1463 .
    30. 段献礼,江俐敏,饶宇,王智德. 管棚注浆支护隧道开挖引起地表变形特征分析. 地下空间与工程学报. 2021(04): 1234-1243 .
    31. 王敏,甘晓露,杜巍,俞建霖,龚晓南. 考虑土体刚度衰减的地面堆载对既有隧道影响. 地下空间与工程学报. 2021(06): 1965-1971+1979 .
    32. 柳程柱,苏永华. 盾构施工引起的管线变形规律及安全风险评估. 铁道科学与工程学报. 2020(11): 2882-2891 .
    33. 甘晓露,俞建霖,龚晓南,朱旻,程康. 新建双线隧道下穿对既有盾构隧道影响研究. 岩石力学与工程学报. 2020(S2): 3586-3594 .
    34. 李晓宁,杨祺隆,何昌迪. 双隧道非并行掘进对既埋管线的影响研究. 建材与装饰. 2019(16): 247-248 .
    35. 张治国,张洋彬,王志伟,方蕾,马少坤,师敏之,魏纲. 类矩形截面隧道开挖诱发邻近管线变形模型试验与数值模拟研究. 隧道与地下工程灾害防治. 2019(04): 85-96 .

    Other cited types(23)

Catalog

    Article views (318) PDF downloads (195) Cited by(58)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return