• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
MA Wei-jia, CHEN Guo-xing, LI Lei, WU Qi, LIU Jing-ru. Experimental study on liquefaction characteristics of saturated coral sand in Nansha Islands under cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(5): 981-988. DOI: 10.11779/CJGE201905023
Citation: MA Wei-jia, CHEN Guo-xing, LI Lei, WU Qi, LIU Jing-ru. Experimental study on liquefaction characteristics of saturated coral sand in Nansha Islands under cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(5): 981-988. DOI: 10.11779/CJGE201905023

Experimental study on liquefaction characteristics of saturated coral sand in Nansha Islands under cyclic loading

More Information
  • Received Date: March 19, 2018
  • Published Date: May 24, 2019
  • Undrained cyclic traxial tests are carried out on the saturated coral sand in Nansha Islands, South China Sea. The experiment aims at investigating the characteristics of pore water pressure,axial strain,effective stress path and cyclic resistance of coral sand under different Dr and. The differences between coral sand and Fujian sand about liquefaction characteristic are also discussed. The test results indicate that the development of pore water pressure (Δu) of coral sand is different from that of siliceous sand, which can be fitted by a modified Seed model. The accumulative energy dissipation of liquefied coral sand is greater than that of liquefied Fujian sand. The axial strain (εDA) of coral sand has no sudden enlargement phenomenon during cyclic loading, and the amplitude of εDA increases continuingly with the loading time. When touching the phase transformation line, the coral sand shows the alternation of dilatancy and contraction as the effective stress still exists. Compared with the Fujian sand, the coral sand has a greater fluctuation in especially when approaching, and a phenomenon of transient liquefaction can be observed in the tests. The cyclic resistance of coral sand increases with the increase of Dr and. The cyclic resistance of coral sand is basically higher than that of siliceous sand.
  • [1]
    朱长歧, 陈海洋, 孟庆山, 等. 钙质砂颗粒内孔隙的结构特征分析[J]. 岩土力学, 2014, 35(7): 1831-1836.
    (ZHU Chang-qi, CHEN Hai-yang, MENG Qing-shan, et al.Microscopic characterization of intra-pore structures of calcareous sands[J]. Rock and Soil Mechanics, 2014, 35(7): 1831-1836. (in Chinese))
    [2]
    陈海洋, 汪稔, 李建国, 等. 钙质砂颗粒的形状分析[J]. 岩土力学, 2005, 26(9): 1389-1392.
    (CHEN Hai-yang, WANG Ren, LI Jian-guo, et al.Grain shape analysis of calcareous soil[J]. Rock and Soil Mechanics, 2005, 26(9): 1389-1392. (in Chinese))
    [3]
    CELESTINO T B, MITCHELL J K.Behavior of carbonate sands for foundations of offshore structures[C]// Proceedings of Brazil Offshore'83, Rio de janeiro, 1983: 85-102.
    [4]
    MEJIA L H, YEUNG M R.Liquefaction of Coralline Soils during the 1993 guam earthquake[C]// Earthquake-induced Movements and Seismic Remediation of Existing Foundations and Abutments: Proceedings of Sessions Held in Conjunction with the ASCE Convention in San Diego. San Diego, 1995: 33-48.
    [5]
    CHOCK G, KINDRED T, ROBERTSON I, et al.Compilation of observations of the October 15, 2006 Kiholo bay (Mw 6.7) and Mahukona (Mw 6.0) Earthquakes, Hawai'i[R]. Earthquake Engineering Research Institute (EERT). Compilation of observations of the October 15, 2006 Kiholo bay (Mw 6.7) and Mahukona (Mw 6.0) Earthquakes, Hawai'i[R]. Earthquake Engineering Research Institute (EERT). http://www.eeri.org/2006/10/island-of-hawaii/. 2006.
    [6]
    OLSON S M, GREEN R A, LASLEY S, et al.Documenting liquefaction and lateral spreading triggered by the 12 January 2010 haiti earthquake[J]. Earthquake Spectra, 2012, 27(S1): S93-S116.
    [7]
    HYODO M, HYDE A F L, ARAMAKI N. Liquefaction of crushable soils[J]. Géotechnique, 1998, 48(4): 527-543.
    [8]
    SALEM M, ELMAMLOUK H, AGAIBY S.Static and cyclic behavior of North Coast calcareous sand in Egypt[J]. Soil Dynamics and Earthquake Engineering, 2013, 55: 83-91.
    [9]
    SHARMA S S, ISMAIL M A.Monotonic and cyclic behavior of two calcareous soils of different origins[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(12): 1581-1591.
    [10]
    虞海珍, 汪稔. 钙质砂动强度试验研究[J]. 岩土力学, 1999, 20(4): 6-11.
    (YU Hai-zhen, WANG Ren.Experimental study on dynamic strength of calcareous sand[J]. Rock and Soil Mechanics, 1999, 20(4): 6-11. (in Chinese))
    [11]
    李建国. 波浪荷载作用下饱和钙质砂动力特性的试验研究[D]. 武汉: 中国科学院武汉岩土力学研究所, 2005.
    (LI Jian-guo.Experimental research on dynamic behavior of saturated calcareous sand under wave loading[D]. Wuhan: Institute of Rock & Soil Mechanics Chinese Academy of Sciences. P.R. China, 2005. (in Chinese))
    [12]
    FIGUEROA J L, SAADA A S, LIANG L, et al.Evaluation of soil liquefaction by energy principles[J]. Journal of Geotechnical Engineering, 1994, 120(9): 1554-1569.
    [13]
    LEE K L, ALBAISA A.Earthquake induced settlements in saturated sands[J]. Journal of the Geotechnical Engineering Division, 1974, 100(4): 387-406.
    [14]
    SEED H B, LYSMER J, MARTIN P P.Pore-water pressure changes during soil liquefaction[J]. Journal of the Geotechnical Engineering, 1976, 102(4): 323-346.
    [15]
    BOOKER J R, RAHMAN M S, SEED H B.GADFLEA-A computer program for the analysis of pore pressure generation and dissipation during cyclic or earthquake loading[R]. Berkeley: Earthquake Engineering Research Center, Univ of California at Berkeley, 1976.
    [16]
    SEED H B, TOKIMATSU K, HARDER L F, et al.Influence of SPT procedures in soil liquefaction resistance evaluations[J]. Journal of Geotechnical Engineering, 1985, 111(12): 1425-1445.
    [17]
    MARTIN G R, FINN W D L, SEED H B. Fundamentals of liquefaction under cyclic loading[J]. Journal of the Geotechnical Engineering, 1975, 101(5): 423-438.
    [18]
    BRANDES H G.Simple shear behavior of calcareous and quartz sands[J]. Geotechnical & Geological Engineering, 2011, 29(1): 113-126.
    [19]
    SANDOVAL E A, PANDO M A.Experimental assessment of the liquefaction resistance of calcareous biogenous sands[J]. Earth Sciences Research Journal, 2012, 16(16): 55-63.
    [20]
    LAVIELLE T H.Liquefaction susceptibility of uncemented calcareous sands from Puerto Rico by cyclic triaxial testing[D]. Montgomery County: Virginia Tech, 2008.
  • Cited by

    Periodical cited type(43)

    1. 赵福堂,吴祁新,郑俊杰,郑烨炜. 基于广义剪应变的各向异性固结饱和砂土超静孔压发展模型. 岩土工程学报. 2025(02): 315-323 . 本站查看
    2. 王家全,和玉,林志南,唐毅. 考虑温度效应下海砂动力特性试验研究. 土木工程学报. 2025(02): 118-128 .
    3. 郭舒洋,崔杰,吴杨,单毅,中田幸男,梶山慎太郎. 饱和珊瑚砂液化特性动三轴试验研究. 地震工程学报. 2024(01): 84-94 .
    4. Chen Guoxing,Qin You,Ma Weijia,Liang Ke,Wu Qi,C.Hsein Juang. Liquefaction susceptibility and deformation characteristics of saturated coral sandy soils subjected to cyclic loadings——a critical review. Earthquake Engineering and Engineering Vibration. 2024(01): 261-296 .
    5. 韩庆华,王永超,刘铭劼,李浩斌. 振动台试验饱和机制砂模型土动力特性研究. 土木工程学报. 2024(03): 110-122 .
    6. 金丹丹,施展,王炳辉,张雷. 冲击荷载下层状饱和无粘性土动孔压发展模式研究. 防灾减灾工程学报. 2024(02): 442-449 .
    7. 王家全,和玉,祝梦柯,钱弘毅. 相对密实度和固结应力比对北部湾海砂动力特性影响的试验研究. 安全与环境工程. 2024(04): 20-28 .
    8. 毛无卫,陈洁朋,潘龙. 珊瑚砂中桩贯入过程的声发射特征. 工程地质学报. 2024(05): 1872-1879 .
    9. 杨铮涛,王路阳,吴琪,周正龙,陈国兴. 细粒含量和相对密度对饱和珊瑚砂体应变发展特性影响试验. 工程科学与技术. 2024(06): 197-206 .
    10. 吴琪,吉东伟,肖兴,朱升冬,陈国兴. 海洋软黏土不排水循环强度的触变性试验研究. 岩土工程学报. 2024(12): 2513-2520 . 本站查看
    11. 王义德,汪云龙,刘荟达,张思宇,袁晓铭. 控制饱和度的珊瑚砂振动台液化模型试验研究. 地震工程与工程振动. 2024(06): 117-124 .
    12. 陈平山,吕卫清,梁小丛,周红星,王婧,马佳钧. 含细粒珊瑚土抗液化特性试验研究. 岩土力学. 2023(02): 337-344 .
    13. 李雪,王滢,高盟,陈青生,彭晓东. 地震荷载作用下南海非饱和钙质砂动力特性研究. 岩土力学. 2023(03): 821-833 .
    14. 郭竟语,汪新凯,马雅林,陈文龙. 孟加拉地区典型砂土抗液化特性动三轴试验研究. 路基工程. 2023(03): 62-67 .
    15. 秦悠,杨铮涛,吴琪,赵凯,陈国兴. 不同循环加载方式下饱和珊瑚砂的液化流动特性. 岩土工程学报. 2023(08): 1625-1634 . 本站查看
    16. 陈平山,梁小丛,王体强,王德咏,王永志,樊旭,陈卓识,袁晓铭. 珊瑚礁砂与标准砂场地液化特征动力离心试验研究. 岩石力学与工程学报. 2023(09): 2283-2294 .
    17. 李能,吴杨,周福霖,谭平. 岛礁吹填珊瑚砂不排水单调和循环剪切特性试验. 中国公路学报. 2023(08): 152-161 .
    18. 杨铮涛,秦悠,吴琪,陈国兴. 循环加载频率对饱和珊瑚砂液化特性的影响. 岩土力学. 2023(09): 2648-2656 .
    19. 吴琪,王路阳,刘启菲,周正龙,马维嘉,陈国兴. 基于剪切应变特征的饱和珊瑚砂超静孔压发展模型试验研究. 岩土工程学报. 2023(10): 2091-2099 . 本站查看
    20. 曹振中,史欢欢,秦志光,莫红艳,袁晓铭. 珊瑚礁砂地震液化评价与排水阈值条件研究. 地震工程与工程振动. 2023(05): 22-32 .
    21. 肖兴,吉东伟,杭天柱,吴琪,陈国兴. 海洋黏土孔压增长和刚度弱化的循环阈值剪应变试验研究. 岩土工程学报. 2023(S1): 123-127 . 本站查看
    22. 秦悠,马维嘉,吴琪,赵凯,陈国兴. 各向异性固结下饱和珊瑚砂的不排水循环反应特性. 土木工程学报. 2023(12): 177-186 .
    23. 梁小丛,陈平山,刘志军,王永志,朱明星. 离心机振动台模型试验验证的珊瑚礁砂液化判别方法研究. 岩土力学. 2023(11): 3173-3181+3212 .
    24. 张思懿,马林建,李洪亚,邓家军,李增. 软弱珊瑚砂地基加固研究进展. 防护工程. 2023(06): 71-78 .
    25. 刘志遐,郭成超,朱鸿鹄,曹鼎峰,黄锐,王复明,董璞. 珊瑚钙质砂导热系数与含水率关系的修正C?té-Konrad模型研究. 岩土工程学报. 2023(11): 2319-2326 . 本站查看
    26. 吴杨,崔杰,李晨,温丽维,单振东,廖静容. 细粒含量对岛礁吹填珊瑚砂最大动剪切模量影响的试验研究. 岩石力学与工程学报. 2022(01): 205-216 .
    27. 史金权,肖杨,刘汉龙,Wim Haegeman. 钙质砂小应变初始剪切模量试验研究. 岩土工程学报. 2022(02): 324-333 . 本站查看
    28. 马维嘉,秦悠,王常德,陈国兴. 复杂应力条件下饱和珊瑚砂各向异性试验研究. 岩土工程学报. 2022(03): 576-583 . 本站查看
    29. 刘志遐,郭成超,曹鼎峰,黄锐. 中国南海珊瑚钙质砂压缩特性. 科学技术与工程. 2022(06): 2401-2408 .
    30. 杨斌,林军. 饱和钙质砂孔压发展特性试验研究. 人民长江. 2022(06): 174-179 .
    31. 刘俊新,张建新,袁槐岑,张超,王光进. 高应力条件下双向激振时尾粉砂的动力特性. 工程科学与技术. 2022(04): 129-140 .
    32. 周洁,李泽垚,田万君,孙佳玮. 人工冻结对南京砂液化特性的影响. 中国铁道科学. 2021(02): 28-38 .
    33. 赵胜华,赵艳林,何江,曹振中,席方超. 颗粒级配对南沙珊瑚砂液化特性的影响. 中国科技论文. 2021(04): 402-407 .
    34. 高盟,彭晓东,陈青生. 南海非饱和钙质砂动力特性三轴试验研究. 北京工业大学学报. 2021(06): 625-635 .
    35. 刘抗,陈国兴,吴琪,马维嘉,秦悠. 循环加载方向对饱和珊瑚砂液化特性的影响. 岩土力学. 2021(07): 1951-1960 .
    36. ZHANG Yan-ling,DING Xuan-ming,CHEN Zhi-xiong,WU Qi,WANG Cheng-long. Seismic responses of slopes with different angles in coral sand. Journal of Mountain Science. 2021(09): 2475-2485 .
    37. 王鸾,汪云龙,袁晓铭,段志刚,刘荟达. 人工场地吹填珊瑚土抗液化强度大粒径动三轴试验研究. 岩土力学. 2021(10): 2819-2829 .
    38. 王蒙婷,郝宇杰,王吉. 相对密实度及激振频率对可液化场地动力响应特性影响数值模拟研究. 路基工程. 2021(05): 108-113 .
    39. 赵文燕,王桂萱,尹训强,赵杰. 南沙群岛永暑礁西南部珊瑚礁动力稳定性分析评价. 自然灾害学报. 2021(05): 181-189 .
    40. 许成顺,王冰,杜修力,岳冲,杨钰荣. 循环加载频率对砂土液化模式的影响试验研究. 土木工程学报. 2021(11): 109-118 .
    41. 刘俊新,袁槐岑,张超,张建新,刘育田,王光进. 高应力条件下循环球-偏应力耦合作用对饱和尾粉砂动力特性影响分析. 水利学报. 2021(11): 1295-1308 .
    42. 梁珂,何杨,陈国兴. 南沙珊瑚砂的动剪切模量和阻尼比特性试验研究. 岩土力学. 2020(01): 23-31+38 .
    43. 贾真,秦志光,曹振中. 钙质砂土原位试验对比与液化风险分析. 地震工程与工程振动. 2019(04): 178-183 .

    Other cited types(19)

Catalog

    Article views (367) PDF downloads (287) Cited by(62)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return