• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
MA Peng, ZHUANG Yan-feng, LIU Zhi-tao. Experimental study on expandability of montmorillonite modified by electrochemical method[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(5): 900-907. DOI: 10.11779/CJGE201905013
Citation: MA Peng, ZHUANG Yan-feng, LIU Zhi-tao. Experimental study on expandability of montmorillonite modified by electrochemical method[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(5): 900-907. DOI: 10.11779/CJGE201905013

Experimental study on expandability of montmorillonite modified by electrochemical method

More Information
  • Received Date: June 19, 2018
  • Published Date: May 24, 2019
  • Based on the characteristics of electrochemistry, a new idea for in-situ treatment of expansive soils is proposed, with a high charge hydroxy aluminum ion solution as the electrolyte, and the modification of montmorillonite by hydroxyl aluminum ions into the soils under the effect of applied electric field. From the macroscopic point of view, the particle analysis is conducted, and the limiting moisture content and swelling characteristics of montmorillonite before and after electrochemical modification are studied. The results show that the swelling characteristics of the modified montmorillonite decrease significantly, and the soils in the anode area reach the performance requirements of the non-expansive soils. The X-ray diffraction tests on the montmorillonite before and after modification are carried out from the microscopic layer. The hygroscopic sensitivity between the lattice layers of the montmorillonite after modification is obviously reduced, indicating that the hydroxyl aluminum ions enter into the interlayer, replace the cations and reduce the hydrophilicity of the mineral lattice. The changes in the weight loss of montmorillonite before and after the modification at different temperatures are studied through thermal analysis. It is shown that the hydroxyl aluminum ions enter into the double layers to exchange cations and attach to the surface of clay particles, reducing the thickness of the double layers and the expansibility of the montmorillonite.
  • [1]
    张伟利. 化学法改良膨胀土的试验研究[D]. 杨凌: 西北农林科技大学, 2014.
    (ZHANG Wei-li.Experimental study on the chemical modication of expansive soil[D]. Yangling: Northwest A&F University, 2014. (in Chinese))
    [2]
    刘清秉, 项伟, 吴云刚, 等. 膨胀土工程特性及改性理论研究[M]. 武汉: 中国地质大学出版社, 2015.
    (LIU Qing-bing, XIANG Wei, WU Yun-gang, et al.Research on engineering characteristics and modification theory of expansive soil[M]. Wuhan: China University of Geosciences Press, 2015. (in Chinese))
    [3]
    BJERRUM L, MOUN J, ELIDE O.Application of electro-osmosis to a foundation problem in a norweigian quick clay[J]. Géotechnique, 1967, 17(3): 214-235.
    [4]
    BURNOTTE F, LEFEBVRE G, GRONDIN G.A case record of electroosmosis consolidation of soft clay with improved[J]. Canadian Geotechnical Journal, 2004, 41(6): 1038-1053.
    [5]
    GRAY D H, MITCHELL J K.Fundamental aspects of electro-osmosis in soils[J]. Journal of the Soil Mechanics and Foundation Division, ASCE. 1967, 93(6): 209-236.
    [6]
    INGLES O G, METCALF J B.Soil stablizer, principle and practice[M]. Sydney: Butterworths, 1972.
    [7]
    BELL F G.Engineering treatment soils[M]. 1st ed. London: E&F Spon, 1993.
    [8]
    CHEN S C, OU C Y, WANG M K.Injection of saline solutions to improve the electro-osmotic pressure and consolidation of foundation soil[J]. Applied Clay Science, 2009, 44(44): 218-224.
    [9]
    OU C Y, SHAOCHI C, WANG Y G.On the enhancement of electroosmotic soil improvement by the injection of saline solutions[J]. Applied Clay Science, 2009, 44(1/2): 130-136.
    [10]
    CHANG H W, KRISHNA P G, CHIEN S C, et al.Electro-osmotic chemical treatments: effects of Ca2+ concentration on the mechanical strength and pH of kaolin[J]. Clays and Clay Minerals, 2010, 58(2): 154-163.
    [11]
    CHEN S C, OU C Y, LEE Y C.A novel electroosmotic chemical treatment technique for soil improvement[J]. Applied Clay Science, 2010, 50(4): 481-492.
    [12]
    ALSHAWABKEH A N, SHEHAN T C.Stabilizing fine grained soils by phosphate electrogrouting[J]. Journal of the Transportation research Board, 2002, 1787(1): 53-60.
    [13]
    ALSHAWABKEH A N, SHEHAN T C.Soft soil stabilization by ionic injection under electric fields[J]. Proceedings of the Institution of Civil Engineers: Ground Improvement, 2003, 7(4): 177-185.
    [14]
    李洪艺, 张澄博, 张永定. 盐溶液注入对电动加固软土影响的研究进展[C]// 2011 年全国工程地质学术年会论文集. 北京: 科学出版社, 2011: 288-293.
    (LI Hong-yi, ZHANG Cheng-bo, ZHANG Yong-ding.Research progress on the effect of salt solution injection on electrically-enhanced soft soil[C]// 2011 National Academic Symposium of Engineering Geology. Beijing: Science Press, 2011: 288-293. (in Chinese))
    [15]
    邵鸿飞, 刘元俊, 冀克俭, 等. 羟基铝离子柱撑蒙脱石材料的制备与结构表征[J]. 化学分析计量, 2015, 24(1): 61-63.
    (SHAO Hong-fei, LIU Yuan-jun, YAN Ke-jian, et al.Preparation and structure characterization of hydroxy aluminum ion pillared montmorillonite materials[J]. Chemical Analysis and Measurement, 2015, 24(1): 61-63. (in Chinese))
    [16]
    赵成刚, 白冰. 土力学原理[M]. 北京: 清华大学出版社, 2004.
    (ZHAO Cheng-gang, BAI Bing.Principles of soil mechanics[M]. Beijing: Tsinghua University Press, 2004. (in Chinese))
    [17]
    章庆和. 膨润土差热曲线与物理化学特性的关系[J]. 矿物学报, 1989, 9(2): 2177-2180.
    (ZHANG Qing-he.Relationship between differential thermal curve and physical and chemical properties of bentonite[J]. Acta Mineralogica Sinica, 1989, 9(2): 2177-2180. (in Chinese))
  • Cited by

    Periodical cited type(22)

    1. 赫连腾,张丰涛. 快掘扰动下巷道围岩变形控制技术研究. 现代矿业. 2024(02): 210-213 .
    2. 双海清,辛越强,李树刚,林海飞,周斌,尚英智,刘思博. 基于关键层理论的切顶留巷下覆岩裂隙分布特征研究. 煤炭科学技术. 2024(05): 102-113 .
    3. 李鹏飞. 近距离煤层采空区下开采底板破坏规律研究. 山东煤炭科技. 2024(06): 123-127+133 .
    4. 王俊超. 强矿压永久巷道支护失效分析与多层次耦合控制对策. 煤炭与化工. 2024(10): 6-11 .
    5. 弓海军,刘一洪,赵洪宝,李岳,荆士杰. 采场底板裂隙扩展的分区特征及其临界应力条件. 中国矿业大学学报. 2024(06): 1132-1143 .
    6. 黄琪嵩,许波,冯俊军,林晓飞,程久龙,彭俊. 考虑顶板断裂动载作用的采场底板破坏深度研究. 煤田地质与勘探. 2024(12): 13-24 .
    7. 卢方超,张学博,高建良. 倾斜特厚煤层上分层开采时下分层煤体载荷及渗透率演化规律研究. 矿业安全与环保. 2023(02): 14-20 .
    8. 韩宇峰,王兆会,唐岳松. 大采高工作面支架刚度对煤壁稳定性的影响效应研究. 煤炭科学技术. 2023(03): 1-9 .
    9. 孟川杰. 基于虚拟影像探查的深部裂隙岩体储水分布探测研究. 中国测试. 2022(03): 53-58 .
    10. 池秀文,谢宇,陈东方,汪宗英,邓学翰,赵龙. 基于颗粒流的层状矿岩细观参数标定研究. 矿业研究与开发. 2022(10): 113-118 .
    11. 兰红,郑禄林,陈庆港,林健云,邱青,赵禹,田友稳. 动静载荷下含软弱夹层巷道围岩稳定性分析. 煤矿安全. 2022(12): 241-246+252 .
    12. 李巍,阮泽宇,郭亚超,吴来伟,张鹏,余宏. 基于数值模拟分析的上邻近煤层底板损伤特征研究. 矿业研究与开发. 2021(03): 70-74 .
    13. 岳喜占,涂敏,李迎富,张劲松,高亮. 近距离煤层开采遗留边界煤柱下底板巷道采动附加应力计算. 采矿与安全工程学报. 2021(02): 246-252+259 .
    14. 杨鹏,杨伟峰,张鑫全,王振荣,杨茂林. 基于信息熵的采动覆岩应力动态演化与水害辨识. 煤炭学报. 2021(09): 3006-3014 .
    15. 曹淑良,杨林,陈健. 华恒矿业双大巷跨采技术及巷道加固支护效果分析. 现代矿业. 2020(01): 73-76+82 .
    16. 庞义辉,王国法,李冰冰. 深部采场覆岩应力路径效应与失稳过程分析. 岩石力学与工程学报. 2020(04): 682-694 .
    17. 孙艺丹,杨逾,孙博一,李珉,孙浩翔. 动力扰动下巷道围岩变形影响因素敏感性分析. 煤炭科学技术. 2020(05): 57-62 .
    18. 杨逾,孙艺丹,张国赟. 动载下巷道围岩微震响应特征及支护研究. 中国安全生产科学技术. 2020(06): 73-79 .
    19. 杨仁树,朱晔,李永亮,李炜煜. 层状岩体中巷道底板应力分布规律及损伤破坏特征. 中国矿业大学学报. 2020(04): 615-626+645 .
    20. 毕鹏,魏文胜. 赵固二矿非对称底鼓破坏规律研究. 煤. 2020(10): 8-11+14 .
    21. 牛田瑞,陈健,曹峰. 近距离煤层采动及构造对预掘工作面回撤通道的影响. 煤炭科学技术. 2020(S2): 47-52 .
    22. 谢和平. 深部岩体力学与开采理论研究进展. 煤炭学报. 2019(05): 1283-1305 .

    Other cited types(20)

Catalog

    Article views (254) PDF downloads (209) Cited by(42)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return