• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
REN Hui, HU Xiang-dong, HONG Ze-qun, ZHANG Jun. Experimental study on active freezing scheme of freeze-sealing pipe roof used in ultra-shallow buried tunnels[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(2): 320-328. DOI: 10.11779/CJGE201902010
Citation: REN Hui, HU Xiang-dong, HONG Ze-qun, ZHANG Jun. Experimental study on active freezing scheme of freeze-sealing pipe roof used in ultra-shallow buried tunnels[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(2): 320-328. DOI: 10.11779/CJGE201902010

Experimental study on active freezing scheme of freeze-sealing pipe roof used in ultra-shallow buried tunnels

More Information
  • Received Date: October 31, 2017
  • Published Date: February 24, 2019
  • The excavated section of Gongbei Tunnel of Zhuhai Link of Hong Kong-Zhuhai-Macao Bridge is an ultra-shallow buried tunnel located in water-rich area, and a new pre-support system named freeze-sealing pipe roof (FSPR) is first adopted. Based on the diverse combinations of “circular master freezing-tube” within the solid jacking pipes and “profiled enhancing freezing-tube” within the empty jacking pipes, three kinds of active freezing modes are proposed, i.e., solid jacking pipes, combination of solid jacking pipes and empty jacking pipes, and combination of solid jacking pipes as the principal and empty jacking pipes as the complement. The above three freezing modes are analyzed and verified by means of two different analysis methods of temperature-time curve and thickness of frozen curtain according to the requirements of the design program. The results show that the first freezing mode cannot form a 2 m-thick frozen soil curtain in 60 d, the second one can form 2 m-thick frozen soil curtain within 30 d, and the third one can also form 2 m-thick frozen soil curtain in 60 d under lagged running of profiled enhancing freezing-tube of 12 d or 39 d; and the requirements of sealing water between jacked pipes can be achieved after 1 to 3 d when the profiled enhancing freezing-tube is started to work.
  • [1]
    沈桂平, 曹文宏, 杨俊龙, 等. 管幕法综述[J]. 岩土工程界, 2006, 9(2): 27-29.
    (SHEN Gui-ping, CAO Wen-hong, YANG Jun-long, et al.Review of pipe-roof method[J]. Geotechnical Engineering World, 2006, 9(2): 27-29. (in Chinese))
    [2]
    张云. 浅埋暗挖大跨度地铁车站施工技术[J]. 隧道建设, 2005, 25(2): 28-30, 43.(ZHANG Yun. Construction technology of shallow buried and dark digging large-span metro station[J]. Tunnel Construction, 2005, 25(2): 28-30, 43. (in Chinese))
    [3]
    杨慧林. 新管幕工法修建地铁暗挖车站技术研究[D]. 成都: 西南交通大学, 2013.
    (YANG Hui-lin.Research on new tubular roof method applied to underground excavated subway station[D]. Chengdu: Southwest Jiaotong University, 2013. (in Chinese))
    [4]
    葛金科. 饱和软土地层中管幕法隧道施工方案研究[J]. 上海公路, 2004(1): 38-43.
    (GE Jin-ke.Study on construction scheme of pipe-curtain tunneling in saturated soft soil stratum[J]. Shanghai Highway, 2004(1): 38-43. (in Chinese))
    [5]
    李耀良. 张云海, 李伟强. 软土地区管幕法工艺研究与应用[J]. 地下空间与工程学报, 2011, 7(5): 962-967.
    (LI Yao-liang, ZHANG Yun-hai, LI Wei-qiang.Research and Application of Pipe Roofing Method in Soft Soil[J]. Chinese Journal of Underground Space and Engineering, 2011, 7(5): 962-967. (in Chinese))
    [6]
    周晓敏, 苏立凡, 贺长俊, 等. 北京地铁隧道水平冻结法施工[J]. 岩土工程学报, 1999, 21(3): 319-322.
    (ZHOU Xiao-min, SU Li-fan, HE Chang-jun, et al.Horizontal ground freezing method applied to tunneling of Beijing underground railway system[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(3): 319-322. (in Chinese))
    [7]
    罗俊成, 史海鸥, 徐兵壮, 等. 长距离水平冻结法在广州地铁中的应用与实践[J]. 现代隧道技术, 2002, 39(4): 22-26.
    (LUO Jun-cheng, SHI Hai-ou, XU Bing-zhuang, et al.Application of Horizontal Ground Freezing Method to Guangzhou Metro[J]. Modern Tunnelling Technology, 2002, 39(4): 22-26. (in Chinese))
    [8]
    肖朝昀. 人工地层冻结冻土帷幕形成与解冻规律研究[D]. 上海: 同济大学, 2007.
    (XIAO Zhao-yun.Research on the forming and thawing of frozen soil walls by artificial ground freezing method[D]. Shanghai: Tongji University, 2007. (in Chinese))
    [9]
    张军. 地层液氮冻结法特性及冻结效果研究[D]. 上海: 同济大学, 2011.
    (ZHANG Jun.Research on freezing characteristics and freezing effect by liquid nitrogen[D]. Shanghai: Tongji University, 2011. (in Chinese))
    [10]
    HU X D, GUO W, ZHANG L Y, et al.Application of liquid nitrogen freezing to recovery of a collapsed shield tunnel[J]. Journal of Performance of Constructed Facilities, 2014, 28(4): 04014002.
    [11]
    陈湘生. 地层冻结法[M]. 北京: 人民交通出版社, 2013.
    (CHEN Xiang-sheng.Ground freezing method[M]. Beijing: China Communications Press, 2013. (in Chinese))
    [12]
    余晶, 程勇, 贾瑞华. 港珠澳大桥珠海连接线拱北隧道方案论证[J]. 现代隧道技术, 2012, 49(1): 119-125+131. (YU Jing, CHENG Yong, JIA Rui-hua. Option Demonstration for the Gongbei Tunnel at the Zhuhai Link of the Hong Kong-Zhuhai-Macau Bridge[J]. Modern Tunnelling Technology, 2012, 49(1): 119-125+131.(in Chinese))
    [13]
    程勇, 刘继国. 拱北隧道设计方案[J]. 公路隧道, 2012(3): 34-38.
    (CHENG Yong, LIU Ji-guo.Scheme designing of gongbei tunnel[J]. Highway Tunnel, 2012(3): 34-38. (in Chinese))
    [14]
    HU X D, SHE S Y.Study of freezing scheme in freeze-sealing pipe roof method based on numerical simulation of temperature field[C]// CPTT 2012. Wuhan, 2012: 1798-1805.
    [15]
    胡向东, 方涛. 管幕冻结法在隧道开挖及初期支护过程中温度场数值模拟分析[J]. 中国公路, 2013(增刊): 72-79.
    (HU Xiang-dong, FANG Tao.Numerical simulation of temperature field at the excavation and primary support period in tunnel construction using freeze-sealing pipe roof method[J]. China Highway, 2013(S0): 72-79. (in Chinese))
    [16]
    HU X D, FANG T.Numerical simulation of temperature field at the active freeze period in tunnel construction using freeze-sealing pipe roof method[C]// Tunneling and Underground Construction. Shanghai, 2014: 731-741.
    [17]
    汪洋. 管幕冻结法钢管-冻土复合结构力学性能研究[D]. 上海: 同济大学, 2013.
    (WANG Yang.Mechanical property analysis of steel pipe-frozen soil composite structure in freeze-sealing pipe roof method[D]. Shanghai: Tongji University, 2013. (in Chinese))
    [18]
    胡向东, 任辉, 陈锦, 等. 管幕冻结法积极冻结方案模型试验研究[J]. 现代隧道技术, 2014, 51(5): 92-98.
    (HU Xiang-dong, REN Hui, CHEN Jin, et al.Model test study of the active freezing scheme for the combined pipe-roof and freezing method[J]. Modern Tunneling Technology, 2014, 51(5): 92-98. (in Chinese))
    [19]
    任辉, 胡向东, 陈锦, 等. 异形加强冻结管在管幕冻结法中的冻结效果及使用方法研究[J]. 隧道建设, 2015, 35(11): 1169-1175.
    (REN Hui, HU Xiang-dong, CHEN Jin, et al.Study on freezing effect and operation of profiled enhancing freezing-tube in freeze-sealing pipe roof[J]. Tunnel Construction, 2015, 35(11): 1169-1175. (in Chinese))
    [20]
    李志宏, 王文州, 胡向东, 等. 施工热扰动对管幕冻结止水帷幕影响研究[J]. 土木工程学报, 2015, 48(增刊2): 374-379.
    (LI Zhi-hong, WANG Wen-zhou, HU Xiang-dong, et al.Research on influence of construction thermal disturbance on the freezing-sealing pipe roof[J]. China Civil Engineering Journal, 2015, 48(S2): 374-379. (in Chinese))
    [21]
    胡向东, 郭晓东, 王啟铜, 等. 管幕冻结法现场试验研究[J]. 隧道建设, 2015, 35(增刊2): 1-7.
    (HU Xiang-dong, GUO Xiao-dong, WANG Qi-tong, et al.Field test study on freezing technology of freeze-sealing pipe roof[J]. Tunnel Construction, 2015, 35(S2): 1-7. (in Chinese))
    [22]
    张军, 胡向东, 任辉. 拱北隧道管幕冻结施工中限位管的冻结效果控制研究[J]. 隧道建设, 2015, 35(11): 1157-1163.
    (ZHANG Jun, HU Xiang-dong, REN Hui.Case study on control of freezing effect by installing limiting tubes in freezing-sealing pipe roof in Gongbei tunnel[J]. Tunnel Construction, 2015, 35(11): 1157-1163. (in Chinese))
  • Cited by

    Periodical cited type(34)

    1. 洪泽群,付硕任,石荣剑,张勇,陆路,孙猛,仇培云. 基坑工程局部冻结止水的稳态温度场解析研究. 隧道建设(中英文). 2024(01): 116-125 .
    2. 李治家,刘炳刚,陈啸宇,李海,陈时光. 江底隧道盾构泥水舱冻结法施工技术研究. 建筑机械化. 2024(07): 59-62 .
    3. 邓声君,张金海,陈浩林,蒋刚,龚晓南. 基于分数阶导数的冻土–结构接触面剪切蠕变模型研究. 岩石力学与工程学报. 2024(12): 3070-3080 .
    4. 周文,胡俊,曾晖,李珂,曾东灵,王志鑫,冯继超. 不同渗流速度对新型管幕冻结法温度场影响. 海南大学学报(自然科学版). 2023(01): 85-94 .
    5. 刘秀芝. 新型管幕预筑一体化结构施工安全控制技术研究. 铁道建筑技术. 2023(02): 179-181+190 .
    6. 黄宝龙,韩玉福,杨志刚,张松,杨宁,温汉宏,魏可东. 大断面长距离通道冻结加固设计与开挖施工方案研究. 施工技术(中英文). 2023(06): 79-83 .
    7. 杨坤,胡俊,曾晖,林小淇,任军昊,王志鑫. 盾构对接新型冻结装置地层加固温度场的演变规律. 海南大学学报(自然科学版). 2023(02): 199-210 .
    8. 杨志刚. 大断面通道“冻结壁+水泥加固体”联合围护体系与开挖方法. 建井技术. 2023(03): 20-23+19 .
    9. 孙文昊,牛野,刘雨萌,张俊儒,孔超. 基于多跨单向板力学模型的管幕冻结法隧道初期支护参数优化方法. 铁道标准设计. 2023(08): 120-128 .
    10. 季雨坤,王海航,周国庆,赵晓东,王钦科,李瑞林. 冻结锋面移动控制的冻土冻胀控制研究. 中国矿业大学学报. 2023(05): 943-951 .
    11. 鹿庆蕊,金修伟,李栋伟,陈士军,王帅儒. 盾构隧道进出口水平冻结工程地表沉降对比分析. 工业建筑. 2023(11): 50-54+49 .
    12. 刘学文,黄琦明,朱仕伟. 顶进法冻结管安装技术在地铁隧道中的应用. 现代城市轨道交通. 2022(S1): 74-79 .
    13. 黄丰,石荣剑,岳丰田,王坤. 钢管冻土协同结构冻结壁边界发展过程的模型试验. 岩石力学与工程学报. 2022(S1): 3063-3072 .
    14. 徐旭. 液氮冻结法在大型管线抢修施工的应用——以迪士尼为例. 城市建筑. 2022(08): 147-149 .
    15. 莫云波. 风化砂砾地层地铁冻结施工引起的沉降分析与加固控制技术. 中国水运. 2022(06): 138-140 .
    16. 詹海鸿. 泥质粉砂岩地层地铁联络通道冷冻加固冻结温度变化规律研究. 中国水运(下半月). 2022(07): 131-133 .
    17. 彭勇波. 交通繁忙路段密贴管线浅埋暗挖过路通道施工技术. 广东土木与建筑. 2022(11): 99-102 .
    18. 廖源,唐艳平,刘新,周志寰,吴先伟. 人字门门格清淤装置设计及在船闸大修中的应用. 中国水运. 2022(11): 117-119 .
    19. 文彦鑫,伍旺,郭治岳,宋修元,尹红,蒋辉,晏启祥. 富水砂卵石地层地铁联络横通道人工冻结数值分析. 土木与环境工程学报(中英文). 2022(06): 63-74 .
    20. 杨志刚. 大体量冻结工程长距离输冷冻结系统设计优化研究. 建井技术. 2022(06): 65-70 .
    21. 詹海鸿. 泥质粉砂岩地层地铁联络通道冷冻加固冻结温度变化规律研究. 中国水运. 2022(14): 131-133 .
    22. 高瑞,岳红波,梁聪,刘媛莹,燕晓,梅源. 封闭环境下冻结法辅助钢套筒盾构施工关键技术研究. 施工技术. 2021(04): 57-60 .
    23. 郑凯. 复杂环境条件下城市综合管廊超浅埋暗挖施工技术研究. 工程技术研究. 2021(10): 123-125 .
    24. 王熙朝. 高水位淤泥质土层超浅埋暗挖施工技术运用的探讨. 北方建筑. 2020(01): 59-62 .
    25. 岳红波,梁聪,刘媛莹,燕晓,梅源. 杯形水平冻结法端头加固联合钢套筒盾构接收技术研究. 施工技术. 2020(04): 19-21 .
    26. 陈鑫,张泽,李东庆,张东明,方德扬. 软弱夹层对水泥土单轴压缩影响研究. 岩石力学与工程学报. 2020(02): 398-412 .
    27. 龙伟,荣传新,段寅,郭轲. 拱北隧道管幕冻结法温度场数值计算. 煤田地质与勘探. 2020(03): 160-168 .
    28. 周清才,王宁,张旭军,赵广波,肖红龙,赵良杰. 地铁车站盖挖联合管幕施工技术. 施工技术. 2020(10): 82-85+94 .
    29. 陈鑫,张泽,李东庆. 水泥土强度特性和损伤本构模型研究. 湖南大学学报(自然科学版). 2020(07): 109-119 .
    30. 梅源,赵良杰,周东波,刘建国,朱俊涛,朱军. 冻结法在富水砂层暗挖施工中的应用. 中国铁道科学. 2020(04): 1-10 .
    31. 李怀鑫,林斌,王鹏,范登政. 热力耦合作用对桩及桩间土拱效应的影响研究. 中国安全生产科学技术. 2020(08): 143-148 .
    32. 张冬梅,逄健,任辉,韩磊. 港珠澳大桥拱北隧道施工变形规律分析. 岩土工程学报. 2020(09): 1632-1641 . 本站查看
    33. 杨丹萍,孙正财. 地下暗挖管幕结构研究进展. 建筑与预算. 2020(11): 8-10 .
    34. 胡向东,李忻轶,吴元昊,韩磊,张成斌. 拱北隧道管幕冻结法管间冻结封水效果实测研究. 岩土工程学报. 2019(12): 2207-2214 . 本站查看

    Other cited types(21)

Catalog

    Article views (312) PDF downloads (308) Cited by(55)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return