• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
AN Ai-jun, LIAO Jing-yun. Modified mesostructure of Standard Gange Railway expansive soils of Mombasa- Nairobi based on nuclear magnetic resonance and scanning electron microscope[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S2): 152-156. DOI: 10.11779/CJGE2018S2031
Citation: AN Ai-jun, LIAO Jing-yun. Modified mesostructure of Standard Gange Railway expansive soils of Mombasa- Nairobi based on nuclear magnetic resonance and scanning electron microscope[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S2): 152-156. DOI: 10.11779/CJGE2018S2031

Modified mesostructure of Standard Gange Railway expansive soils of Mombasa- Nairobi based on nuclear magnetic resonance and scanning electron microscope

More Information
  • Received Date: July 21, 2018
  • Published Date: October 29, 2018
  • The pore structure and distribution characteristics have important influences on the physical and mechanical properties of expansive soils. The pore characteristics of the expansive soils before and after improvement treatment of lime-volcanic ash are analyzed using the NMR technology to obtain their change of pores and distribution laws. The change of internal cementation of the expansive soils before and after modification is analyzed by means of the scanning electron microscopy. The experimental results show that the number of pores in the range of 0~0.1 μm in diameter is significantly reduced, that in the range of 0.1~4 μm in diameter increases, and that in diameter more than 4 μm decreases as a whole. After modification of the expansive soils, a mixed structure with honeycomb structure, skeleton structure and spongy structure is formed, which improves the compactness of soil particles, reduces the connectivity of pores, and effectively inhibites the swelling and shrinkage characteristics of the expansive soils.
  • [1]
    城乡建设环境保护部. 膨胀土地区建筑技术规范[M]. 北京: 中国计划出版社, 1989.
    (Technical code for buildings in expansive soil regions[M]Technical code for buildings in expansive soil regions[M]. Beijing: China Planning Press, 1989. (in Chinese))
    [2]
    唐朝生, 施斌, 刘春. 膨胀土收缩开裂特性研究[J]. 工程地质学报, 2012, 20(5): 663-73.
    (TANG Chao-sheng, SHI Bin, LIU Chun.Study on desiccation cracking behavior of expansive soil[J]. Engineering Geology Journal, 2012, 20(5): 663-673. (in Chinese))
    [3]
    TAYLOR R B, DAVID A K, JR T A J, et al. Principles and applications[M]. New York: Springer, 1999.
    [4]
    VOLOKITIN Y, LOOYESTIJN W J, SLIJKERMAN W F J, et al. A practical approach to obtain primary drainage capillary pressure curves from NMR core and log data[J]. Petrophysics, 2001, 42(4):
    [5]
    李天降, 李子丰, 赵彦超, 等. 核磁共振与压汞法的孔隙结构一致性研究[J]. 天然气工业, 2006, 26(10): 57-59.
    (LI Tian-xiang, LI Zi-feng, ZHAO Yan-chao, et al.Consistency of pore structures between NMR and mercury intrusion method[J]. Natural Gas Industry, 2006, 26(10): 57-59. (in Chinese))
    [6]
    周科平, 李杰林, 许玉娟, 等. 基于核磁共振技术的岩石孔隙结构特征测定[J]. 中南大学学报(自然科学版), 2012, 43(12): 4796-4800.
    (ZHOU Ke-ping, LI Jie-lin, XU Yu-juan, et al.Measurement of rock pore structure based on NMR technology[J]. Journal of Central South University (Science and Technology), 2012, 43(12): 4796-4800. (in Chinese))
    [7]
    田慧会, 韦昌富. 基于核磁共振技术的土体吸附水含量测试与分析[J]. 中国科学 (技术科学), 2014, 44(3): 295-305.
    (TIAN Hui-hui, WEI Chang-fu.A NMR-based testing and analysis of adsorbed water content[J]. Scientia Sinica Technologica, 2014, 44(3): 295-305. (in Chinese))
    [8]
    李彰明, 曾文秀, 高美连, 等. 典型荷载条件下淤泥孔径分布特征核磁共振试验研究[J]. 物理学报, 2014, 63(5): 366-372.
    (LI Zhang-ming, ZENG Wen-xiu, GAO Mei-lian, et al.Nuclear magnetic resonance experimental study on the characteristics of pore-size distribution in muck under several typical loading cases[J]. Acta Physica Sinica, 2014, 63(5): 366-372. (in Chinese))
    [9]
    TOVEY N K.Quantitative analysis of electron micrographs of soil structure[C]// International Symposium on Soil Structure, 1973.
    [10]
    施斌. 黏性土微观结构SEM图象的定量研究[J]. 中国科学, 1995, 6: 666-672.
    (SHI Bin.M.Tolkachev. Quantitative research on the orientation of microstructures of clayey soil[J]. Acta Geologica Sinica, 1995, 6: 666-672. (in Chinese))
    [11]
    刘志彬, 施斌, 王宝军. 改性膨胀土微观孔隙定量研究[J]. 岩土工程学报, 2004, 26(4): 526-530.
    (LIU Zhi-bin, SHI Bin, WANG Bao-jun.Quantitative research on micropores of modified expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(4): 526-530. (in Chinese))
    [12]
    袁中夏, 王兰民, 邓津. 电镜图像在黄土结构性研究中应用的几个问题[J]. 工程勘察, 2005(4): 1-4.
    (YUAN Zhong-xia, WANG Lan-min, DENG Jin.Several Problems on Application of SEM Image in the Structure Properties Study of Loess[J]. Geotechnical Investigation & Surveying, 2005(4): 1-4. (in Chinese))
    [13]
    熊承仁, 唐辉明, 刘宝琛, 等. 利用SEM照片获取土的孔隙结构参数[J]. 地球科学-中国地质大学学报, 2007, 32(3): 415-419.
    (XIONG Cheng-ren, TANG Hui-ming, LIU Bao-chen, et al.Using SEM photos to gain the pore structural parameters of soil samples[J]. Earth Science-Journal of China University of Geosciences, 2007, 32(3): 415-419. (in Chinese))
    [14]
    MUTAZ E, DAFALLA M A.Chemical analysis and X-ray diffraction assessment of stabilized expansive soils[J]. Bulletin of Engineering Geology & the Environment, 2014, 73(4): 1063-1072.
    [15]
    YOOTHONG K, MONCHAROEN L, VIJARNSON P, et al.Clay mineralogy of Thai soils[J]. Applied Clay Science, 1997, 11(5/6): 357-371.
  • Cited by

    Periodical cited type(23)

    1. 王欢,曹素娟,李宝宝. 不同固结条件下改良弱膨胀土微观分析. 建筑科学与工程学报. 2023(04): 163-170 .
    2. 于航. 冻融作用下地铁站场地粉质粘土宏、细观渗透特征研究. 地下水. 2023(05): 67-70 .
    3. 蔡位子,刘怡颖,江俊,欧阳霖,杨沄瑾,卢煜强,侯俊伟,齐龙,王海林. 土壤孔隙结构检测技术研究现状与展望. 沈阳农业大学学报. 2023(05): 627-640 .
    4. 王晖,严松. 全风化混合花岗岩矿物成分与微观结构研究. 岩土工程技术. 2023(06): 700-707 .
    5. 赵永永. 冻融循环下引江济淮河道水泥改性膨胀土性能试验研究. 铁道建筑技术. 2022(05): 38-42 .
    6. 庄心善,周睦凯,周荣,陶高梁. EPS改良膨胀土孔隙特征与滞回曲线形态. 浙江大学学报(工学版). 2022(07): 1353-1362+1403 .
    7. 柴寿喜,张琳,魏丽,田萌萌. 冻融作用下纤维加筋固化盐渍土的抗压性能与微观结构. 水文地质工程地质. 2022(05): 96-105 .
    8. 魏丽,柴寿喜,薛美玲,王沛,李芳. 以抗剪性能与结构损伤评价纤维加筋土的冻融耐久性. 岩石力学与工程学报. 2022(S2): 3453-3463 .
    9. 魏丽,柴寿喜,刘著,王沛,李芳. 以扫描电镜与核磁共振指标评价冻融纤维加筋土的抗压强度. 岩土力学. 2022(S2): 163-170+182 .
    10. 刘金都,冯晨,李江山,汪凯凯. 砷、镉复合重金属污染土土-水特性及微观机制研究. 岩土力学. 2022(10): 2841-2851 .
    11. 赵润涛. 高液限膨胀性黏土化学改良试验研究. 铁道建筑. 2021(05): 75-79 .
    12. 蒋晓庆,李永彪. 基于核磁共振技术的水泥改良膨胀土抗剪强度参数分析. 宿州学院学报. 2021(06): 50-53 .
    13. 庄心善,周睦凯,陶高梁,周荣,彭承鸿,林万锋. 循环荷载下发泡聚苯乙烯改良膨胀土动弹性模量与阻尼比试验研究. 岩土力学. 2021(09): 2427-2436 .
    14. 徐长文,阮波. 冻融循环下纤维水泥改良风积沙NMR试验研究. 铁道科学与工程学报. 2021(09): 2289-2298 .
    15. 杨国生,左双英,莫云川,张亚彬,李加华. 基于核磁共振技术的贵阳红黏土剪切全过程孔隙演变规律研究. 工程地质学报. 2021(05): 1320-1330 .
    16. 田芳. 冻融循环作用下膨胀土的力学与孔隙分布特点. 山东农业大学学报(自然科学版). 2020(02): 365-369 .
    17. 黄勇杰,庄心善,赵汉文. 风化砂改良膨胀土动弹性模量试验研究. 价值工程. 2020(15): 220-221 .
    18. 何艳平. 肯尼亚蒙巴萨地区膨胀土特性试验与边坡防护研究. 铁道建筑技术. 2020(04): 1-5+22 .
    19. 孙孝海,谢建斌,赵一锦,陈伟,张文豪,江胜. 工业碱渣改性膨胀土室内试验研究. 河南理工大学学报(自然科学版). 2020(05): 154-160 .
    20. 孙孝海,谢建斌,陈伟,赵一锦,江胜,刘道炎. 工业碱渣改良云南典型膨胀土的膨胀特性试验. 江苏大学学报(自然科学版). 2020(05): 615-620 .
    21. 刘宽,叶万军,高海军,董琪. 干湿环境下膨胀土力学性能劣化的多尺度效应. 岩石力学与工程学报. 2020(10): 2148-2159 .
    22. 王颖,刘瑾,马晓凡,祁长青,卢洪宁. 基于核磁共振的聚氨酯固化砂土浸水作用分析. 岩土工程学报. 2020(12): 2342-2349 . 本站查看
    23. 吴云涛,叶万军,杨更社,段钊. 考虑应力路径的土体微观孔隙及宏观变形特征试验研究. 岩石力学与工程学报. 2019(11): 2311-2320 .

    Other cited types(44)

Catalog

    Article views (306) PDF downloads (198) Cited by(67)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return