• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
XU Wei-wei, SHI Bei-xiao, CHEN Sheng-shui, LING Hua. Effects of porosity on strength and deformation of rockfill materials[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S2): 47-52. DOI: 10.11779/CJGE2018S2010
Citation: XU Wei-wei, SHI Bei-xiao, CHEN Sheng-shui, LING Hua. Effects of porosity on strength and deformation of rockfill materials[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S2): 47-52. DOI: 10.11779/CJGE2018S2010

Effects of porosity on strength and deformation of rockfill materials

  • In view of the rockfill materials utilized in a 300 m - grade high earth-rock core rockfill dam to be constructed, large static triaxial tests under different porosities are performed to analyze the influences of porosity on strength and deformation of rockfill materials. The test results show that with the increase of porosity, the peak strength of rockfill materials decreases and the volume deformation gradually increases. Also, the shear displacement at the peak point increases, and the shear displacement corresponding to the maximum volumetric deformation also increases. With the increase of the loading confining pressure, the particles will be broken to some extent. Thus, these conditions are reflected in the parameters of the Duncan-Chang and the NHRI Constitutive models as follows: the parameters k and nd decrease, and n, cd and Rd increase when the porosity increases. The main reason is that with the increase of porosity, the internal porosity of the particles increases, the interparticle spacing increases, and the contact points between the particles decrease. Under the same confining pressure and shear stress, the volume deformation increases and thus the deviatoric stress corresponding to the maximum reduced volume strain increases. Along with the increasing value of porosity, the spacing between particles increases, the interlocking of particles is weakened, the initial tangent modulus of the rockfill is reduced and the ability of particles to resist external force is weakened, which shows that the internal friction angle between particles and the shear strength decrease. In addition, the content of P<5 has evident effect on the strength and deformation of rockfill materials. In the case of the same porosity, the peak strength, the maximum volume variable, the shear displacement corresponding to the peak shear strength point, and the shear displacement corresponding to the maximum volume strain increase with the increase of percentage of P<5 contained. It is obvious that the change of porosity has an influence on the strength and deformation of rockfill materials. It is proposed that the degree of compaction should be strictly controlled during the process of on-site rolling compaction to meet the design requirements and to ensure the safety of the dam.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return