• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LI Chun-yuan, ZHANG Yong, ZHANG Guo-jun, GAO Shou-yang, WANG Hong-bo. Crack propagation mechanisms and stress evolution of floor under dynamic disturbance in deep coal mining[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(11): 2031-2040. DOI: 10.11779/CJGE201811009
Citation: LI Chun-yuan, ZHANG Yong, ZHANG Guo-jun, GAO Shou-yang, WANG Hong-bo. Crack propagation mechanisms and stress evolution of floor under dynamic disturbance in deep coal mining[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(11): 2031-2040. DOI: 10.11779/CJGE201811009

Crack propagation mechanisms and stress evolution of floor under dynamic disturbance in deep coal mining

More Information
  • Received Date: September 14, 2017
  • Published Date: November 24, 2018
  • Inrush accidents are easily and frequently caused under high geostress and rising of dynamic disasters which induce crack propagation of rock mass in deep coal mining. So it is important to study the crack propagation mechanisms under dynamic disturbance. According to the elastic theory, the influences of dynamic disturbance of roof on stress of floor are analyzed. The evolution of stress and displacement under dynamic disturbance is simulated. Based on the unloading rock mass mechanics, the propagation mechanisms of cracks in the bottom effect zone under dynamic disturbance and inrush channel development zone under unloading are studied by stages, and the penetration effect of cracks is explored based on the seepage characteristics of rock mass under confined water pressure, and then engineering verifications are carried out. The results show that with the increasing dynamic disturbance intensity, the stress in the bottom effect zone increases nonlinearly. The larger the dynamic disturbance intensity, the higher the starting points of stress unloading, and it easily meets the critical stress of instability propagation of cracks. The dynamic disturbance intensity determines crack propagation and seepage mechanisms, and when the stratum depth of permeability suddenly increased in the inrush channel development zone is larger than the thickness of aquiclude, water inrush of floor will be induced.
  • [1]
    谢和平, 高峰, 鞠杨. 深部岩体力学研究与探索[J]. 岩石力学与工程学报, 2015, 35(11): 2161-2178.
    (XIE He-ping, GAO Feng, JU Yang.Research and development of rock mechanics in deep ground engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 35(11): 2161-2178. (in Chinese))
    [2]
    刘其声. 关于突水系数的讨论[J]. 煤田地质与勘探, 2009, 37(4): 34-37.
    (LIU Qi-sheng.A discussion on water inrush coefficient[J]. Coal Geology & Exploration, 2009, 37(4): 34-37. (in Chinese))
    [3]
    张勇, 庞义辉. 基于应力—渗流耦合理论的突水力学模型[J]. 中国矿业大学学报, 2010, 39(5): 659-664.
    (ZHANG Yong, PANG Yi-hui.Water-inrush mechanical model based on a theory of coupled stress-seepage[J]. Journal of China University of Mining & Technology, 2010, 39(5): 659-664. (in Chinese))
    [4]
    钱鸣高, 缪协兴, 许家林, 等. 岩层控制的关键层理论[M]. 徐州: 中国矿业大学出版社, 2000.
    (QIAN Ming-gao, MIU Xie-xing, XU Jia-lin, et al.Key strata theory in ground control[M]. Xuzhou: China University of Mining & Technology Press, 2000. (in Chinese))
    [5]
    左宇军, 李术才, 秦泗凤, 等. 动力扰动诱发承压水底板关键层失稳的突变理论研究[J]. 岩土力学, 2010, 31(8): 2361-2366.
    (ZUO Yu-jun, LI Shu-cai, QIN Si-feng, et al.A catastrophe model for floor water-resisting key stratum instability induced by dynamic disturbance[J]. Rock and Soil Mechanics, 2010, 31(8): 2361-2366. (in Chinese))
    [6]
    WONG R H C, CHAU K T, TANG C, et al. Analysis of crack coalescence in rock-like materials containing three flaws part I: experimental approach[J]. International Journal of Rock Mechanics and Mining Sciences, 2001, 38(7): 909-924.
    [7]
    徐则民, 黄润秋, 罗杏春, 等. 静荷载理论在岩爆研究中的局限性及岩爆岩石动力学机理的初步分析[J]. 岩石力学与工程学报, 2003, 22(8): 1255-1262.
    (XU Ze-min, HUANG Run-qiu, LUO Xing-chun, et al.Limitations of static load theory in rock burst research and preliminary analysis on dynamics mechanism of rockburst[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(8): 1255-1262. (in Chinese))
    [8]
    杨敬轩, 刘长友, 于斌, 等. 坚硬厚层顶板群结构破断的采场冲击效应[J]. 中国矿业大学学报, 2014, 43(1): 8-15.
    (YANG Jing-xuan, LIU Chang-you, YU Bin, et al.Impact effect caused by the fracture of thick and hard roof structures in a longwall face[J]. Journal of China University of Mining & Technology, 2014, 43(1): 8-15. (in Chinese))
    [9]
    王家臣. 厚煤层开采理论与技术[M]. 北京: 冶金工业出版社, 2009.
    (WANG Jia-chen.Thick coal seam mining theory and technology[M]. Beijing: Metallurgical Industry Press, 2009. (in Chinese))
    [10]
    卢爱红, 郁时炼, 秦昊, 等. 应力波作用下巷道围岩层裂结构的稳定性研究[J]. 中国矿业大学学报, 2008, 37(6): 769-774.
    (LU Ai-hong, YU Shi-lian, QIN hao, et al. Stability of layered crack structure in roadway surrounding rock under stress wave[J]. Journal of China University of Mining & Technology, 2008, 37(6): 769-774. (in Chinese))
    [11]
    褚怀保, 杨小林, 侯爱军, 等. 煤体中爆炸应力波传播与衰减规律模拟实验研究[J]. 爆炸与冲击, 2012, 32(2): 185-189.
    (CHU Huai-bao, YANG Xiao-lin, HOU Ai-jun, et al.A simulation-based experimental study on explosion stress wave propagation and attenuation in coal[J]. Explosion and Shock Waves, 2012, 32(2): 185-189. (in Chinese))
    [12]
    宋振骐. 实用矿山压力控制[M]. 徐州: 中国矿业大学出版社, 1988.
    (SONG Zhen-qi.Practical underground pressure control[M]. Xuzhou: China University of Mining & Technology Press, 1988. (in Chinese))
    [13]
    彭苏萍, 王金安. 承压水体上安全采煤[M]. 北京: 煤炭工业出版社, 2001.
    (PENG Su-ping, WANG Jin-an.Safety coal mining above the confined water[M]. Beijing: China Coal Industry Publishing House, 2001. (in Chinese))
    [14]
    周小平, 张永兴. 卸荷岩体本构理论及其应用[M]. 北京: 科学出版社, 2007.
    (ZHOU Xiao-ping,ZHANG Yong-xing.Constitutive theory and its application of unloading rock mass mechanics[M]. Beijing: Science Press, 2007. (in Chinese))
    [15]
    LOUIS C.Rock mechanics[M]. New York: Verlay Wien, 1974.
    [16]
    梁宁慧, 刘新荣, 包太. 岩体卸荷渗流特性的试验[J]. 重庆大学学报(自然科学版), 2005,28(10): 133-135.
    (LIANG Ning-hui, LIU Xin-rong, BAO Tai.Expermiental study on the characteristic of seepage with unloading rock mass[J]. Journal of Chongqing University (Natural Science Edition), 2005, 28(10): 133-135. (in Chinese))
    [17]
    杨峰, 彭苏萍. 地质雷达探测原理与方法研究[M]. 北京: 科学出版社, 2010.
    (YANG Feng, PENG Su-ping.Penetrating principle and methods research of ground radar[M]. Beijing: Science Press, 2010. (in Chinese))
  • Related Articles

    [1]RONG Teng-long, LIU Ke-liu, ZHOU Hong-wei, GUAN Can, CHEN Yan, REN Wei-guang. Permeability evolution of deep coal under mining stress[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1106-1114. DOI: 10.11779/CJGE202206015
    [2]ZHANG Pei-sen, YAN Wei, ZHANG Wen-quan, SHEN Baotang. Mechanism of water inrush due to damage of floor and fault activation induced by mining coal seam with fault defects under fluid-solid coupling mode[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(5): 877-889. DOI: 10.11779/CJGE201605013
    [3]WANG Meng, NIU Yu-he, YU Yong-jian, SUN Shang-xu. Experimental research on characteristics of deformation and failure of surrounding rock of roadway in deep mine under influence of principal stress evolution[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(2): 237-244. DOI: 10.11779/CJGE201602006
    [4]ZHANG Guo-feng, ZHU Wei, ZHAO Pei. In-situ stress measurements and analysis of action of geological structures of deep coal mines in Xuzhou[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(12): 2318-2324.
    [5]ZHU Shu-yun, CAO Ding-tao, YUE Zun-cai, JIANG Zhen-quan, ZHAO Lian-tao, YU Xu-lei. Comprehensive measurement of characteristics of deformation and failure of extra-thick coal seam floor induced by fully mechanized top-coal mining[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1931-1938.
    [6]JU Yang, ZUO Jianping, SONG Zhenduo, TIAN Lulu, ZHOU Hongwei. Numerical simulation of stress distribution and displacement of rock strata of coal mines by means of DDA method[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(2): 268-273.
    [7]WANG Lianguo, SONG Yang. Combined ANN forecast of water-inrush from coal floor[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(4): 502-505.
    [8]XIAO Hongtian, WEN Xinglin, ZHANG Wenquan, LI Baiying. In situ measurement of floor strata displacements in slice mining[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(1): 71-74.
    [9]Wang Jingming. In situ measurement and physical analogue on water inrush from coal floor induced by progressive intrusion of artesian water into protective aquiclude[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(5): 546-549.
    [10]Qian Minggao, Miao Xiexing, Li Liangjie. Mechanism for the Fracyure Behaviours 0f Main Floor in Longwall Mining[J]. Chinese Journal of Geotechnical Engineering, 1995, 17(6): 55-62.
  • Cited by

    Periodical cited type(22)

    1. 赫连腾,张丰涛. 快掘扰动下巷道围岩变形控制技术研究. 现代矿业. 2024(02): 210-213 .
    2. 双海清,辛越强,李树刚,林海飞,周斌,尚英智,刘思博. 基于关键层理论的切顶留巷下覆岩裂隙分布特征研究. 煤炭科学技术. 2024(05): 102-113 .
    3. 李鹏飞. 近距离煤层采空区下开采底板破坏规律研究. 山东煤炭科技. 2024(06): 123-127+133 .
    4. 王俊超. 强矿压永久巷道支护失效分析与多层次耦合控制对策. 煤炭与化工. 2024(10): 6-11 .
    5. 弓海军,刘一洪,赵洪宝,李岳,荆士杰. 采场底板裂隙扩展的分区特征及其临界应力条件. 中国矿业大学学报. 2024(06): 1132-1143 .
    6. 黄琪嵩,许波,冯俊军,林晓飞,程久龙,彭俊. 考虑顶板断裂动载作用的采场底板破坏深度研究. 煤田地质与勘探. 2024(12): 13-24 .
    7. 卢方超,张学博,高建良. 倾斜特厚煤层上分层开采时下分层煤体载荷及渗透率演化规律研究. 矿业安全与环保. 2023(02): 14-20 .
    8. 韩宇峰,王兆会,唐岳松. 大采高工作面支架刚度对煤壁稳定性的影响效应研究. 煤炭科学技术. 2023(03): 1-9 .
    9. 孟川杰. 基于虚拟影像探查的深部裂隙岩体储水分布探测研究. 中国测试. 2022(03): 53-58 .
    10. 池秀文,谢宇,陈东方,汪宗英,邓学翰,赵龙. 基于颗粒流的层状矿岩细观参数标定研究. 矿业研究与开发. 2022(10): 113-118 .
    11. 兰红,郑禄林,陈庆港,林健云,邱青,赵禹,田友稳. 动静载荷下含软弱夹层巷道围岩稳定性分析. 煤矿安全. 2022(12): 241-246+252 .
    12. 李巍,阮泽宇,郭亚超,吴来伟,张鹏,余宏. 基于数值模拟分析的上邻近煤层底板损伤特征研究. 矿业研究与开发. 2021(03): 70-74 .
    13. 岳喜占,涂敏,李迎富,张劲松,高亮. 近距离煤层开采遗留边界煤柱下底板巷道采动附加应力计算. 采矿与安全工程学报. 2021(02): 246-252+259 .
    14. 杨鹏,杨伟峰,张鑫全,王振荣,杨茂林. 基于信息熵的采动覆岩应力动态演化与水害辨识. 煤炭学报. 2021(09): 3006-3014 .
    15. 曹淑良,杨林,陈健. 华恒矿业双大巷跨采技术及巷道加固支护效果分析. 现代矿业. 2020(01): 73-76+82 .
    16. 庞义辉,王国法,李冰冰. 深部采场覆岩应力路径效应与失稳过程分析. 岩石力学与工程学报. 2020(04): 682-694 .
    17. 孙艺丹,杨逾,孙博一,李珉,孙浩翔. 动力扰动下巷道围岩变形影响因素敏感性分析. 煤炭科学技术. 2020(05): 57-62 .
    18. 杨逾,孙艺丹,张国赟. 动载下巷道围岩微震响应特征及支护研究. 中国安全生产科学技术. 2020(06): 73-79 .
    19. 杨仁树,朱晔,李永亮,李炜煜. 层状岩体中巷道底板应力分布规律及损伤破坏特征. 中国矿业大学学报. 2020(04): 615-626+645 .
    20. 毕鹏,魏文胜. 赵固二矿非对称底鼓破坏规律研究. 煤. 2020(10): 8-11+14 .
    21. 牛田瑞,陈健,曹峰. 近距离煤层采动及构造对预掘工作面回撤通道的影响. 煤炭科学技术. 2020(S2): 47-52 .
    22. 谢和平. 深部岩体力学与开采理论研究进展. 煤炭学报. 2019(05): 1283-1305 .

    Other cited types(20)

Catalog

    Article views (276) PDF downloads (173) Cited by(42)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return