• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LIU Hou-xiang, LI Wang-shi, ZHA Zhuan-yi, JIANG Wu-jun, XU Teng. Method for surrounding rock mass classification of highway tunnels based on deep learning technology[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(10): 1809-1817. DOI: 10.11779/CJGE201810007
Citation: LIU Hou-xiang, LI Wang-shi, ZHA Zhuan-yi, JIANG Wu-jun, XU Teng. Method for surrounding rock mass classification of highway tunnels based on deep learning technology[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(10): 1809-1817. DOI: 10.11779/CJGE201810007

Method for surrounding rock mass classification of highway tunnels based on deep learning technology

More Information
  • Received Date: August 08, 2017
  • Published Date: October 24, 2018
  • By extracting the relevant information of surrounding rock classification of road tunnel face using the deep learning technology, a multilayer convolution neural network model is established to recognize the distributive features of surrounding rock including joints, cracks, broken situations, rough degrees, smooth degrees, mud stone and water burst, etc. The deep learning AlexNet model is modified to count the number and spacing of rock joints. The deep convolution is used to extract different rock boundaries, and the specific species of rock are determined by the comprehensive color model. The degree of development of structural plane, rock hardness, structural plane roughness, groundwater development, structural types and degree of grade factors of the surrounding rock classification are qualitatively described for the results of the surrounding rock classification so as to obtain the final results of the surrounding rock classification. The results show that the deep learning model is applicable to identify different morphological characteristics of the surrounding rock. Based on the Matlab interface technology, image recognition technology, boundary extraction technology and HIS color model, the comprehensive judgement of surrounding rock classification of highway tunnels is realized. In order to verify its feasibility and accuracy, the classification results of the deep learning technology are compared with those of the traditional BQ classification.
  • [1]
    方昱, 刘保国, 刘开云. 隧道围岩分级的遗传-支持向量分类耦合模型[J]. 铁道学报, 2013, 35(1): 108-114.
    (FANG Yu, LIU Bao-guo, LIU Kai-yun.Tunnel surrounding rock grading model based on genetic-support vector classification coupling algorithm[J]. Journal of the China Railway Society, 2013, 35(1): 108-114. (in Chinese))
    [2]
    段林娣, 宋成辉. 应用BP神经网络进行隧道围岩快速分级[J]. 中国安全科学学报, 2010, 20(2): 41-45.
    (DUAN Lin-di, SONG Cheng-hui.Application of BP neural network in the rapid classification of surrounding rock[J]. China Safety Science Journal, 2010, 20(2): 41-45. (in Chinese))
    [3]
    闫明. 基于系统聚类分析的公路隧道围岩分级方法研究[D]. 吉林: 吉林大学, 2013.
    (YAN Ming.Study on classification method of road tunnel surrounding rock according to the hierarchical cluster analysis[D]. Jilin: Jilin University, 2013. (in Chinese))
    [4]
    白明洲, 许兆义, 王连俊, 等. 隧道围岩分级的模糊信息分析模型及应用研究[J]. 铁道学报, 2001, 23(6): 85-88.
    (BAI Ming-zhou, XU Zhao-yi, WANG Lian-jun, et al.Study and application on fuzzy information analysis model in tunnel surrounding rock mass classification[J]. Journal of the China Railway Society, 2001, 23(6): 85-88. (in Chinese))
    [5]
    陈安凡. 公路隧道围岩分级专家系统研究[D]. 重庆: 重庆大学, 2013.
    (CHEN An-fan.Research on road tunnel surrounding rock classification expert system[D]. Chongqing: Chongqing University, 2013. (in Chinese))
    [6]
    牛文林, 张广洋, 熊国斌, 等. 基于ASP.NET 技术的围岩分级系统开发[J]. 现代隧道技术, 2011, 48(1): 12-16.
    (NIU Wen-lin, ZHANG Guang-yang, XIONG Guo-bin, et al.Rock mass classification system based on ASP. NET[J]. Modern Tunnelling Technology, 2011, 48(1): 12-16. (in Chinese))
    [7]
    何发亮, 谷明成, 王石春. TBM 施工隧道围岩分级方法研究[J]. 岩石力学与工程学报, 2002, 21(9): 1350-1354.
    (HE Fa-liang, GU Ming-cheng, WANG Shi-chun.Study on surrounding rock mass classification of tunnel cut by TBM[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(9): 1350-1354. (in Chinese))
    [8]
    王乐华, 李建荣, 李建林, 等. RMR法评价体系的修正及工程应用[J]. 岩石力学与工程学报, 2013, 32(增刊2): 3309-3316.
    (WANG Le-hua, LI Jian-rong, LI Jian-lin, et al.Correction of RMR system and its engineering application[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(S2): 3309-3316. (in Chinese))
    [9]
    张前进. 基于TSP多波关系的围岩稳定性等级判定方法研究[D]. 北京: 中国地质大学, 2013.
    (ZHANG Qian-jin.Research on the method of grade determination for surrounding rock stability based on TSP multiwave relation[D]. Beijing: China University of Geosciences, 2013. (in Chinese))
    [10]
    HINTON G, DENG L, YU D, et al.Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups[J]. IEEE Signal Process Mag, 2012, 29(6): 82.
    [11]
    HINTON G E.Learning multiple layers of representation[J]. Trends in Cognitive Sciences, 2007, 11(10): 428-434.
    [12]
    HINTON G E.Deep belief networks[J]. Scholarpedia, 2009, 4(5): 5947.
    [13]
    JIA Yang-qing, SHEL Hamer E, DONAHUE J, et al.Caffe: Convolutional architecture for fast feature embedding[C]// Proceedings of the ACM International Conference on Multimedia. ACM, 2014: 675-678.
    [14]
    Alex Krizhevsky. ImageNet Classification with Deep Convolutional Neural Networks[C]// Advances in Neural Information Processing Systems, 2012: 1097-1105.
    [15]
    刘春, 王宝军, 施斌, 等. 基于数字图像识别的岩土体裂隙形态参数分析方法[J]. 岩土工程学报, 2008, 9(9): 1383-1388.
    (LIU Chun, WANG Bao-jun, SHI Bin, et al.Analytic method of morphological parameters of cracks for rock and soil based on image processing and recognition[J]. Chinese Journal of Geotechnical Engineering, 2008, 9(9): 1383-1388. (in Chinese))
    [16]
    GB T50218—2014《工程岩体分级标准》[S]. 2014.
    (GB T50218—2014 Standard for engineering classification of rock mass[S]. 2014. (in Chinese))
  • Related Articles

    [1]PANG Yuanen, SHI Guodong, DUAN Yu, YAO Min, JI Haoze, LUO Ming, LI Maobiao, LI Xu. Gradation recognition of coarse-grained soil based on searcher-analyzer deep learning network (SaNet)[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(9): 1984-1993. DOI: 10.11779/CJGE20221516
    [2]LIU Yushan, SUN Miaojun, WU Shuaifeng, ZHANG Liya, SUN Liming. Intelligent image recognition of particle size and gradation of earth-rock[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S1): 59-62. DOI: 10.11779/CJGE2023S10051
    [3]JI Jian, JIANG Zhen, YIN Xin, WANG Tao, CUI Hong-zhi, ZHANG Wei-jie. Slope reliability analysis based on deep learning of digital images of random fields using CNN[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(8): 1463-1473. DOI: 10.11779/CJGE202208011
    [4]LIU Fei-yue, LIU Yi-han, YANG Tian-hong, XIN Jun-chang, ZHANG Peng-hai, DONG Xin, ZHANG Hai-tao. Meticulous evaluation of rock mass quality in mine engineering based on machine learning of core photos[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(5): 968-974. DOI: 10.11779/CJGE202105023
    [5]LIU Shu-xin, XING Jie, ZHENG Xu, CHEN Shi-jie. Zonal damage information and critical failure identification of CT images of rock under triaxial compression[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 432-438. DOI: 10.11779/CJGE202103005
    [6]LI Qing-bo, DU Peng-zhao. Automatic RQD analysis method based on information recognition of borehole images[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(11): 2153-2160. DOI: 10.11779/CJGE202011022
    [7]WANG Peng-yu, WANG Shu-hong. Method for identifying four common rock types of slopes and determining boundary range[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(8): 1505-1512. DOI: 10.11779/CJGE201908015
    [8]LIU Chun, XU Qiang, SHI Bin, GU Ying-fan. Digital image recognition method of rock particle and pore system and its application[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 925-931. DOI: 10.11779/CJGE201805018
    [9]CHENG Yuan, LIU Zhi-bin, LIU Song-yu, CAI Guo-jun, TONG Li-yuan. Risk recognition of construction of large-span and shallow buried-highway tunnels based on analytic hierarchy process[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(zk1): 191-195.
    [10]LIU Chun, WANG Baojun, SHI Bin, TANG Chaosheng. Analytic method of morphological parameters of cracks for rock and soil based on image processing and recognition[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(9): 1383-1388.
  • Cited by

    Periodical cited type(53)

    1. 马春驰,李想,徐洪伟,李天斌,马志国,张航. 基于IPSO-MOC-RF算法的隧道智能支护方法研究. 岩石力学与工程学报. 2024(03): 556-572 .
    2. 孙浩,代宗晟,金爱兵,陈岩. 基于AttentionR2U-net的岩石(体)关键节理智能识别与参数提取. 东北大学学报(自然科学版). 2024(01): 101-110 .
    3. 钟庆华,孙鑫,张铁军,乔洪磊,杨新安. 围岩智能化分级及其工程应用. 科技创新与应用. 2024(12): 77-80+89 .
    4. 张茹,吕游,张泽天,任利,谢晶,张安林,严志伟,米欧. 深地工程多维信息感知与智能建造的发展与展望. 煤炭学报. 2024(03): 1259-1290 .
    5. 方星桦,阳军生,黄定著,詹双桥,张聪. 基于全景展开图像的隧道围岩节理识别方法. 长江科学院院报. 2024(05): 116-123 .
    6. 盛诞杰,汤瑞,王凯,代声庆,谭飞. 基于熵权-正态云模型的小净距隧道施工风险评估模型. 安全与环境工程. 2024(03): 89-95 .
    7. 周梦琳,陈强,汪波,宋自愿,彭传阳,程黎. 基于图像识别的公路隧道围岩智能动态分级研究. 隧道建设(中英文). 2024(06): 1274-1282 .
    8. 李利平,邹浩,刘洪亮,屠文锋,陈雨雪. 钻爆法隧道智能建造研究现状与发展趋势. 中国公路学报. 2024(07): 1-21 .
    9. 侯卫钢,张晓淼,朱琳,许世龙,张兴帆. 基于图像分割的爆区钻孔节理裂隙特征提取方法. 采矿技术. 2024(05): 129-134 .
    10. 欧阳劭明,丁长栋,丁祥,张宜虎,曹磊,刘倩. 基于TPE-GBT模型的地下水封洞库灌浆量预测研究. 现代隧道技术. 2024(05): 138-145 .
    11. 吴全德,马治中,郭珂依,刘大刚,高洪涛,左继功. 基于机器学习的隧道围岩岩性智能识别方法. 路基工程. 2024(06): 49-54 .
    12. 张胜,黄宁,陈梓浓,凌同华,张亮. 基于小波变换与迁移学习的岩石岩性及含水状态超声波检测. 地球物理学进展. 2024(06): 2407-2419 .
    13. 田四明,连捷,黎旭,王列伟. 隧道掌子面施工区域全过程多元信息智能感知技术研究与实践. 隧道建设(中英文). 2024(12): 2316-2331 .
    14. 凌同华,龙斌,张亮,张胜,江浩. 基于改进UNet网络的衬砌背后空洞识别方法研究. 地下空间与工程学报. 2024(S2): 757-766+773 .
    15. 袁振宇,安哲立,马伟斌,马成贤,王勇,常凯. 融合多源异构信息的隧道围岩智能分级方法探索. 隧道建设(中英文). 2023(03): 429-440 .
    16. 柳厚祥,王建. 基于迁移学习技术的隧道围岩岩性识别方法. 地下空间与工程学报. 2023(02): 437-445 .
    17. 王志坚,童建军. 钻爆法隧道智能建造技术研究综述与展望. 隧道建设(中英文). 2023(04): 529-548 .
    18. 柳厚祥,李子意. 基于MSR算法的公路隧道围岩分级方法. 交通科学与工程. 2023(03): 60-66+97 .
    19. 潘朝,张乾,邹勇. 基于模糊理论的引水隧洞围岩快速分类研究. 水利水电快报. 2023(08): 45-52 .
    20. 葛佳,李爱春. 基于直觉模糊TOPSIS耦合的地铁隧道围岩质量评价. 武汉大学学报(工学版). 2023(07): 835-841 .
    21. 徐博,谢慈航,吴莹. 隧道围岩分级方法研究综述. 隧道建设(中英文). 2023(S1): 25-36 .
    22. 田四明,李术才,刘大刚,王明年. 隧道主动支护体系全过程信息化动态设计与智能决策方法研究. 铁道学报. 2023(11): 1-10 .
    23. 何川,陈子全,周子寒,马伟斌,汪波,张金龙. 基于机器学习的隧道支护体系智能化设计与评价方法. 中国公路学报. 2023(11): 205-217 .
    24. 卢振龙,宋冠先,梁铭,韩玉,朱孟龙,彭浩,严胜杰,卢晓晓,董宏源. 考虑岩体非均质性的隧道掌子面图像分级方法. 公路. 2023(12): 399-406 .
    25. 黄宏伟,陈佳耀. 基于机器视觉的隧道围岩智能识别分级与开挖安全风险研究. 应用基础与工程科学学报. 2023(06): 1382-1409 .
    26. 梁铭,彭浩,解威威,宋冠先,朱孟龙,张亚飞. 基于超前钻探及优化集成算法的隧道围岩双层质量评价. 隧道建设(中英文). 2022(08): 1443-1452 .
    27. 孟馨,秦拥军,谢良甫,袁扬淳,谭顺利. 基于深度学习的东天山特长隧道围岩等级预测. 科学技术与工程. 2022(25): 11219-11226 .
    28. 雷明锋,张运波,王卫东,雷乃金,曾灿,肖勇卓,黄娟,龚琛杰. 岩石岩性Mask R-CNN智能识别方法与应用研究. 铁道科学与工程学报. 2022(11): 3372-3382 .
    29. 方燃,太俊,范毅雄,邱煜. 矿山法在轨道交通隧道施工中的数值模拟及稳定性分析. 长春工程学院学报(自然科学版). 2022(04): 36-41 .
    30. 刘肖,易可夫. 基于迁移学习的桥墩结构损伤识别方法. 公路与汽运. 2021(01): 99-103 .
    31. 王宏喜,朱宗杰,孙仕平,王世松,刘成皓. 罗河铁矿岩体质量关键指标内在关联研究. 现代矿业. 2021(02): 87-93 .
    32. 殷明伦,张晋勋,江玉生,江华,商晓旭. 岩体体积节理数表征岩体完整系数的结构面类别修正研究. 岩土力学. 2021(04): 1133-1140 .
    33. 刘飞跃,刘一汉,杨天鸿,信俊昌,张鹏海,董鑫,张海涛. 基于岩芯图像深度学习的矿山岩体质量精细化评价. 岩土工程学报. 2021(05): 968-974 . 本站查看
    34. 何军,林广东,申小军,徐卫奖. 基于深度学习理论的隧道变形监测技术研究. 山西建筑. 2021(12): 117-120 .
    35. 许振浩,马文,林鹏,石恒,刘彤晖,潘东东. 基于岩石图像迁移学习的岩性智能识别. 应用基础与工程科学学报. 2021(05): 1075-1092 .
    36. 梁辉如,王永东,彭浩,刘俊锋,燕新. 基于正态云理论的软弱隧道围岩分级. 重庆交通大学学报(自然科学版). 2021(11): 82-87 .
    37. 杜洋,辛维克,王瑛楠,赵钰,马洁荣,张振琼,马超锋. 基于凿岩台车的隧道围岩特性判识方法研究. 铁道建筑. 2021(12): 109-112 .
    38. 方诗圣,田海涛,黄德洲,刘伟楠. 基于熵权法-多维云模型的围岩稳定性分类研究. 煤矿安全. 2020(01): 229-232 .
    39. 戚伟,付建新,李腾. 考虑节理劣化效应的深部围岩应力演化规律及敏感性分析. 采矿与安全工程学报. 2020(02): 327-337 .
    40. 蒋雅君,林明才,李鹏,陶双江,唐富军. 应用三维激光扫描技术判定围岩稳定性试验研究. 铁道标准设计. 2020(07): 123-127+133 .
    41. 文海家,黄健豪,袁性涵,谢朋,薛靖元. 基于数值试验的山岭隧道围岩稳定性GIS-SVM预测. 岩石力学与工程学报. 2020(S1): 2920-2929 .
    42. 吴波,黄惟,吴兵兵. 复合地层隧道稳定机理及量化评价研究进展. 科学技术与工程. 2020(33): 13529-13537 .
    43. 黄楠,郑禄林,左宇军,林健云,郑禄璟,何珩溢. 基于PCA-Fuzzy-PSO-SVM的巷道围岩稳定性评价. 矿业研究与开发. 2020(12): 75-80 .
    44. 马世伟,李守定,李晓,马立纲,李增林,张玉锋. 隧道岩体质量智能动态分级KNN方法. 工程地质学报. 2020(06): 1415-1424 .
    45. 郭洪雨,陈宝林,王宇,傅金阳,祝志恒,李世东. 基于ResUNet网络的隧道围岩图像炮孔留痕检测方法. 水利与建筑工程学报. 2020(06): 158-164 .
    46. 高攀. 2018年隧道与地下工程热点回眸. 科技导报. 2019(01): 186-195 .
    47. 马俊杰,李天斌,孟陆波,钟雨奕,姜锡宸. MSVM在汶马高速公路隧道围岩分级中的应用. 成都理工大学学报(自然科学版). 2019(03): 373-380 .
    48. 郑帅,姜谙男,张峰瑞,张勇,申发义,姜旭东. 基于机器学习与可靠度算法的围岩动态分级方法及其工程应用. 岩土力学. 2019(S1): 308-318 .
    49. 王鹏宇,王述红. 四类常见边坡岩石类别识别和边界范围确定的方法. 岩土工程学报. 2019(08): 1505-1512 . 本站查看
    50. 闫鹏洋,王利宁,郭培文,刘涛. 基于层次分析-云模型的隧道围岩分级方法研究. 广东土木与建筑. 2019(09): 48-51 .
    51. 王景春,赵福全,何旭升,王炳华. 基于欧式距离的地铁隧道围岩韧性评估. 铁道标准设计. 2019(10): 106-111 .
    52. 马明明,高晓蕾. 砂卵石地层中公路隧道围岩变形及破坏特征研究. 公路工程. 2019(06): 98-103 .
    53. 孙宇臣. 综合管廊隧洞围岩分级方法研究. 水利水电技术. 2019(S2): 207-214 .

    Other cited types(39)

Catalog

    Article views (648) PDF downloads (748) Cited by(92)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return